精英家教网 > 初中数学 > 题目详情
(2010•嘉兴)如图,已知⊙O的半径为1,PQ是⊙O的直径,n个相同的正三角形沿PQ排成一列,所有正三角形都关于PQ对称,其中第一个△A1B1C1的顶点A1与点P重合,第二个△A2B2C2的顶点A2是B1C1与PQ的交点,…,最后一个△AnBnCn的顶点Bn、Cn在圆上.

(1)如图1,当n=1时,求正三角形的边长a1
(2)如图2,当n=2时,求正三角形的边长a2
(3)如题图,求正三角形的边长an(用含n的代数式表示)
【答案】分析:(1)设PQ与B1C1交于点D,连接B1O,得出OD=A1D-OA1,用含a1的代数式表示OD,在△OB1D中,根据勾股定理求出正三角形的边长a1
(2)设PQ与B2C2交于点E,连接B2O,得出OE=A1E-OA1,用含a2的代数式表示OE,在△OB2E中,根据勾股定理求出正三角形的边长a2
(3)设PQ与BnCn交于点F,连接BnO,得出OF=A1F-OA1,用含an的代数式表示OF,在△OBnF中,根据勾股定理求出正三角形的边长an
解答:解:(1)设PQ与B1C1交于点D,连接B1O.
∵△PB1C1是等边三角形,
∴A1D=PB1•sin∠PB1C1=a1•sin60°=a1
∴OD=A1D-OA1=a1-1,
在△OB1D中,OB12=B1D2+OD2
∴OD=A1D-OA1=a1-1,
即12=(a12+(a1-1)2
解得a1=

(2)设PQ与B2C2交于点E,连接B2O.
∵△A2B2C2是等边三角形,
∴A2E=A2B2•sin∠A2B2C2=a2•sin60°=a2
∵△PB1C1是与△A2B2C2边长相等的正三角形,
∴PA2=A2E=a2
OE=A1E-OA1=a2-1,
在△OB2E中,OB22=B2E2+OE2
即12=(a22+(a2-1)2
解得a2=

(3)设PQ与BnCn交于点F,连接BnO,
得出OF=A1F-OA1=nan-1,
同理,在△OBnF中,OBn2=BnF2+OF2
即12=(an2+(nan-1)2
解得an=
点评:主要考查了等边三角形的性质,勾股定理等知识点.本题中(1)(2)是特殊情况,注意在证明过程中抓住不变条件,从而为证明(3)提供思路和方法.本题综合性强,难度大,有利于培养学生分析、解决问题的能力.
练习册系列答案
相关习题

科目:初中数学 来源:2011年4月福建省泉州市北师大泉州附中中考数学模拟试卷(解析版) 题型:解答题

(2010•嘉兴)如图,已知抛物线y=-x2+x+4交x轴的正半轴于点A,交y轴于点B.
(1)求A、B两点的坐标,并求直线AB的解析式;
(2)设P(x,y)(x>0)是直线y=x上的一点,Q是OP的中点(O是原点),以PQ为对角线作正方形PEQF,若正方形PEQF与直线AB有公共点,求x的取值范围;
(3)在(2)的条件下,记正方形PEQF与△OAB公共部分的面积为S,求S关于x的函数解析式,并探究S的最大值.

查看答案和解析>>

科目:初中数学 来源:2011年浙江省杭州市中考数学模拟试卷(33)(解析版) 题型:解答题

(2010•嘉兴)如图,已知抛物线y=-x2+x+4交x轴的正半轴于点A,交y轴于点B.
(1)求A、B两点的坐标,并求直线AB的解析式;
(2)设P(x,y)(x>0)是直线y=x上的一点,Q是OP的中点(O是原点),以PQ为对角线作正方形PEQF,若正方形PEQF与直线AB有公共点,求x的取值范围;
(3)在(2)的条件下,记正方形PEQF与△OAB公共部分的面积为S,求S关于x的函数解析式,并探究S的最大值.

查看答案和解析>>

科目:初中数学 来源:2011年广东省茂名市化州市文楼中学中考数学一模试卷(解析版) 题型:解答题

(2010•嘉兴)如图,已知抛物线y=-x2+x+4交x轴的正半轴于点A,交y轴于点B.
(1)求A、B两点的坐标,并求直线AB的解析式;
(2)设P(x,y)(x>0)是直线y=x上的一点,Q是OP的中点(O是原点),以PQ为对角线作正方形PEQF,若正方形PEQF与直线AB有公共点,求x的取值范围;
(3)在(2)的条件下,记正方形PEQF与△OAB公共部分的面积为S,求S关于x的函数解析式,并探究S的最大值.

查看答案和解析>>

科目:初中数学 来源:2011年广东省茂名市化州市文楼镇第一中学中考数学二模试卷(解析版) 题型:解答题

(2010•嘉兴)如图,已知抛物线y=-x2+x+4交x轴的正半轴于点A,交y轴于点B.
(1)求A、B两点的坐标,并求直线AB的解析式;
(2)设P(x,y)(x>0)是直线y=x上的一点,Q是OP的中点(O是原点),以PQ为对角线作正方形PEQF,若正方形PEQF与直线AB有公共点,求x的取值范围;
(3)在(2)的条件下,记正方形PEQF与△OAB公共部分的面积为S,求S关于x的函数解析式,并探究S的最大值.

查看答案和解析>>

科目:初中数学 来源:2010年全国中考数学试题汇编《二次函数》(09)(解析版) 题型:解答题

(2010•嘉兴)如图,已知抛物线y=-x2+x+4交x轴的正半轴于点A,交y轴于点B.
(1)求A、B两点的坐标,并求直线AB的解析式;
(2)设P(x,y)(x>0)是直线y=x上的一点,Q是OP的中点(O是原点),以PQ为对角线作正方形PEQF,若正方形PEQF与直线AB有公共点,求x的取值范围;
(3)在(2)的条件下,记正方形PEQF与△OAB公共部分的面积为S,求S关于x的函数解析式,并探究S的最大值.

查看答案和解析>>

同步练习册答案