精英家教网 > 初中数学 > 题目详情
10.如图1,在Rt△ABC中,∠ACB=90°,AC=BC,点D、E分别在AC、BC边上,DC=EC,连接DE、AE、BD,点M、N、P分别是AE、BD、AB的中点,连接PM、PN、MN.

(1)BE与MN的数量关系是BE=$\sqrt{2}$MN;
(2)将△DEC绕点C逆时针旋转到如图2的位置,判断(1)中的结论是否仍然成立,如果成立,请写出证明过程,若不成立,请说明理由;
(3)若CB=6,CE=2,在将图1中的△DEC绕点C逆时针旋转一周的过程中,当B、E、D三点在一条直线上时,MN的长度为$\sqrt{17}$-1或$\sqrt{17}$+1.

分析 (1)如图1中,只要证明△PMN的等腰直角三角形,再利用三角形的中位线定理即可解决问题;
(2)如图2中,结论仍然成立.连接AD、延长BE交AD于点H.由△ECB≌△DCA,推出BE=AD,∠DAC=∠EBC,即可推出BH⊥AD,由M、N、P分别为AE、BD、AB的中点,推出PM∥BE,PM=$\frac{1}{2}$BE,PN∥AD,PN=$\frac{1}{2}$AD,推出PM=PN,∠MPN=90°,可得BE=2PM=2×$\frac{\sqrt{2}}{2}$MN=$\sqrt{2}$MN;
(3)有两种情形分别求解即可;

解答 解:(1)如图1中,

∵AM=ME,AP=PB,
∴PM∥BE,PM=$\frac{1}{2}$BE,
∵BN=DN,AP=PB,
∴PN∥AD,PN=$\frac{1}{2}$AD,
∵AC=BC,CD=CE,
∴AD=BE,
∴PM=PN,
∵∠ACB=90°,
∴AC⊥BC,
∴∵PM∥BC,PN∥AC,
∴PM⊥PN,
∴△PMN的等腰直角三角形,
∴MN=$\sqrt{2}$PM,
∴MN=$\sqrt{2}$•$\frac{1}{2}$BE,
∴BE=$\sqrt{2}$MN,
故答案为BE=$\sqrt{2}$MN.

(2)如图2中,结论仍然成立.

理由:连接AD、延长BE交AD于点H.
∵△ABC和△CDE是等腰直角三角形,
∴CD=CE,CA=CB,∠ACB=∠DCE=90°,
∵∠ACB-∠ACE=∠DCE-∠ACE,
∴∠ACD=∠ECB,
∴△ECB≌△DCA,
∴BE=AD,∠DAC=∠EBC,
∵∠AHB=180°-(∠HAB+∠ABH)
=180°-(45°+∠HAC+∠ABH)
=∠180°-(45°+∠HBC+∠ABH)
=180°-90°
=90°,
∴BH⊥AD,
∵M、N、P分别为AE、BD、AB的中点,
∴PM∥BE,PM=$\frac{1}{2}$BE,PN∥AD,PN=$\frac{1}{2}$AD,
∴PM=PN,∠MPN=90°,
∴BE=2PM=2×$\frac{\sqrt{2}}{2}$MN=$\sqrt{2}$MN.

(3)①如图3中,作CG⊥BD于G,则CE=GE=DG=$\sqrt{2}$,

当D、E、B共线时,在Rt△BCG中,BG=$\sqrt{B{C}^{2}-C{G}^{2}}$=$\sqrt{{6}^{2}-(\sqrt{2})^{2}}$=$\sqrt{34}$,
∴BE=BG-GE=$\sqrt{34}$-$\sqrt{2}$,
∴MN=$\frac{\sqrt{2}}{2}$BE=$\sqrt{17}$-1.
②如图4中,作CG⊥BD于G,则CE=GE=DG=$\sqrt{2}$,

当D、E、B共线时,在Rt△BCG中,BG=$\sqrt{B{C}^{2}-C{G}^{2}}$=$\sqrt{{6}^{2}-(\sqrt{2})^{2}}$=$\sqrt{34}$,
∴BE=BG+GE=$\sqrt{34}$+$\sqrt{2}$,
∴MN=$\frac{\sqrt{2}}{2}$BE=$\sqrt{17}$+1.
故答案为$\sqrt{17}$-1或$\sqrt{17}$+1.

点评 本题考查几何变换综合题、等腰直角三角形的性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

20.如图,直线l是菱形ABCD和矩形EFGH的对称轴,点C在EF边上,若菱形ABCD沿直线l从左向右匀速运动直至点C落在GH边上停止运动.能反映菱形进入矩形内部的周长y与运动的时间x之间关系的图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.已知坐标平面上有两个二次函数y=a(x+1)(x-7),y=b(x+1)(x-15)的图形,其中a、b为整数.判断将二次函数y=b(x+1)(x-15)的图形依下列哪一种方式平移后,会使得此两图形的对称轴重叠(  )
A.向左平移4单位B.向右平移4单位C.向左平移8单位D.向右平移8单位

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.把分别写有数字1,2,3,4,5的5张同样的小卡片放进不透明的盒子里,搅拌均匀后随机取出一张小卡片,则取出的卡片上的数字大于3的概率是$\frac{2}{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.现有五张正面图形分别是平行四边形、圆、等边三角形、正五边形、菱形的卡片,它们除正面图形不同,其它完全相同.将它们背面朝上洗匀后,从中随机抽取一张卡片,卡片的正面图形既是中心对称图形又是轴对称图形的概率是$\frac{2}{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.解方程:
(1)3x+1=x-7
(2)2(x-2)-3(3x+2)=x+6
(3)$\frac{x+1}{2}$-$\frac{3+2x}{3}$=1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.解方程:
(1)2(x-5)=2-x
(2)1-$\frac{1}{2}$x=x+$\frac{1}{3}$
(3)$\frac{3x-1}{2}=\frac{4x+2}{5}$-1
(4)$\frac{x+4}{0.2}-\frac{x-3}{0.5}$=-1.6.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.某市需耍新建一批公交车候车亭,设计师设计了一种产品如图1所示,产品示意图的侧面如图2,其中支柱DC垂直于地面,镶接柱BC与支柱DC的夹角∠BCD=150°,与顶棚横梁AE的夹角∠ABC=135°.要求使得横梁一端点E在支柱DC的延长线上,此时经测量得镶接点B与点E的距离为0.35m,求E,C两点之间的距离.($\sqrt{2}$≈1.41,精确到0.1cm)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.如图,Rt△ABC的边AB在x轴上,且A(-1,0),B(1,0),∠A=45°,斜边AC以点A为旋转中心,顺时针旋转45°,恰好与x轴相交于D,则点D的坐标是(  )
A.($\sqrt{2}$,0)B.(2$\sqrt{2}$,0)C.(2$\sqrt{2}$-1,0)D.(2$\sqrt{2}$-2,0)

查看答案和解析>>

同步练习册答案