精英家教网 > 初中数学 > 题目详情
7.计算:
(1)$\sqrt{12}$-9$\sqrt{\frac{1}{3}}$+$\sqrt{75}$
(2)($\sqrt{2}$-$\sqrt{3}$)2+2$\sqrt{\frac{1}{3}}$×3$\sqrt{2}$.

分析 (1)首先化简二次根式进而合并求出答案;
(2)首先乘法公式以及二次根式乘法化简进而合并求出答案.

解答 解:(1)$\sqrt{12}$-9$\sqrt{\frac{1}{3}}$+$\sqrt{75}$
=2$\sqrt{3}$-9×$\frac{\sqrt{3}}{3}$+5$\sqrt{3}$
=2$\sqrt{3}$-3$\sqrt{3}$+5$\sqrt{3}$
=4$\sqrt{3}$;

(2)($\sqrt{2}$-$\sqrt{3}$)2+2$\sqrt{\frac{1}{3}}$×3$\sqrt{2}$
=2+3-2$\sqrt{6}$+6$\sqrt{\frac{2}{3}}$
=5-2$\sqrt{6}$+6×$\frac{\sqrt{6}}{3}$
=5.

点评 此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

17.简便运算
(1)20172-2016×2018                       
(2)9982

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.解方程:
(1)$\left\{\begin{array}{l}{2x+3y=12①}\\{x-2y=-1②}\end{array}\right.$
(2)$\left\{\begin{array}{l}{6x-5y=4①}\\{2x-3y=4②}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.已知a2+a+1=0,则a4+2a3-a2-2a+2014的值是2017.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.如图,已知l1∥l2∥l3,直线AC、DF分别交直线l1、l2、l3于点A、B、C,和点D、E、F,若DE=2,DF=3,则下列结论中,错误的是(  )
A.$\frac{AD}{CF}$=$\frac{2}{3}$B.$\frac{BC}{AB}$=$\frac{1}{2}$C.$\frac{AB}{AC}$=$\frac{2}{3}$D.$\frac{EF}{DF}$=$\frac{1}{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.∑表示数学中的求和符号,主要用于求多个数的和,∑下面的小字,i=1表示从1开始求和;上面的小字,如n表示求和到n为止.即$\sum_{i=1}^{n}$xi=x1+x2+x3+…+xn.则$\sum_{i=1}^{n}$(i2-i)表示(  )
A.n2-1B.12+22+32+…+i2-i
C.12+22+32+…+n2-1D.12+22+32+…+n2-(1+2+3+…+n )

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,将一张矩形大铁皮切割成九块,切痕如下图虚线所示,其中有两块是边长都为m厘米的大正方形,两块是边长都为n厘米的小正方形,五块是长宽分别是m厘米、n厘米的全等小矩形,且m>n.
(1)用含m、n的代数式表示切痕的总长为6m+6n厘米;
(2)若每块小矩形的面积为48厘米2,四个正方形的面积和为200厘米2,试求(m+n)2的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.分解因式:3x2-75=3(x+5)(x-5).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.已知抛物线C:y=$\frac{1}{4}$x2+bx+c在x=1和x=-1时的函数值相等,且x=2时y=1,P(x,y)为抛物线C上任一点,F(0,1)为y轴上一点,PQ与直线y=-1垂直交于点Q
(1)求出抛物线解析式;
(2)求证:PF=PQ;
(3)若直线y=kx+b过点F(0,1)且与抛物线C交于A、B两点,试判断以AB为直径的圆与直线y=-1位置关系,并说明理由.

查看答案和解析>>

同步练习册答案