精英家教网 > 初中数学 > 题目详情
已知:线段OA⊥OB,点C为OB中点,D为线段OA上一点.连接AC,BD交于点P.
(1)如图1,当OA=OB,且
AD
AO
=
1
2
时,求
AP
PC
的值;
(2)如图2,当OA=OB,且
AD
AO
=
1
4
时,①
AP
PC
=
2
3
2
3
;②证明:∠BPC=∠A;
(3)如图3,当AD:AO:OB=1:n:2
n
时,直接写出tan∠BPC的值.
分析:(1)过C作CE∥BD交AO于点E,则CE为△OBD的中位线,得到DE=OE,由PD∥CE,根据平行线分线段成比例定理得
AP
PC
=
AD
DE
,又
AD
AO
=
1
2
得AD=DO,则有AD=2DE,即可得到
AP
PC
=2;
(2)①与(1)不同的是
AD
AO
=
1
4
则DO=3AD,得2DE=3AD即AD=
2
3
DE,则
AP
PC
=
2
3
;②设OB=8a,则OA=OB=8a,OC=4a,AD=2a,DE=OE=3a,根据勾股定理得到CE=
(4a)2+(3a)2
=5a,则有EC=EA,得到∠ACE=∠A,而∠BPC=∠ACE,即可得到结论;
(3)过D作DF⊥AC,垂足为F,过C作CE∥BD交AO于点E,设AD=a,则AO=na,OB=2a
n
,由点C为OB中点,则CO=a
n
,利用勾股定理可计算得AC=
n2+n
a,易证得Rt△ADF∽Rt△ACO,得到AF:AO=DF:OC=AD:AC,即AF:na=DF:
n
a=a:
n2+n
a,求出AF=
n
n+1
a,DF=
a
n+1
,再根据平行线分线段成比例定理得到AP:AC=AD:AE,即AP:
n2+n
a=a:
n+1
2
a,求出AP=
2 a
n
n+1
,则PF=AP-AF=
n
n+1
a,然后根据正切的定义即可得到tan∠FPD,从而得到tan∠BPC的值.
解答:解:(1)过C作CE∥BD交AO于点E,如图,
∵点C为OB中点,
∴CE为△OBD的中位线,
∴DE=OE,
∵PD∥CE,
AP
PC
=
AD
DE

又∵
AD
AO
=
1
2

∴AD=DO,
∴AD=2DE,
AP
PC
=2;
(2)①过C作CE∥BD交AO于点E,如图,
∵点C为OB中点,
∴CE为△OBD的中位线,
∴DE=OE,
∵PD∥CE,
AP
PC
=
AD
DE

又∵
AD
AO
=
1
4

∴DO=3AD,
∴2DE=3AD,
∴AD=
2
3
DE,
AP
PC
=
2
3

②设OB=8a,
∴OA=OB=8a,OC=4a,
AD=2a,DE=OE=3a,
而OA⊥OB,
∴∠COE=90°,
在Rt△OCE中,OC=4a,OE=3a,则CE=
(4a)2+(3a)2
=5a,
∴EC=EA,
∴∠ACE=∠A,
而CE∥BD,
∴∠BPC=∠ACE,
∴∠BPC=∠A;
故答案为
2
3

(3)过D作DF⊥AC,垂足为F,过C作CE∥BD交AO于点E,如图,
设AD=a,则AO=na,OB=2a
n

∵点C为OB中点,
∴CO=a
n

在Rt△ACO中,AC=
AO2+CO2
=
n2+n
a,
又∵Rt△ADF∽Rt△ACO,
∴AF:AO=DF:OC=AD:AC,即AF:na=DF:
n
a=a:
n2+n
a,
∴AF=
n
n+1
a,DF=
a
n+1

又∵PD∥CE,
∴AP:AC=AD:AE,即AP:
n2+n
a=a:
n+1
2
a,
∴AP=
2 a
n
n+1

∴PF=AP-AF=
n
n+1
a,
∴tan∠FPD=
FD
PF
=
1
n
=
n
n

∴tan∠BPC=
n
n
点评:本题考查了平行线分线段成比例定理:如果一组平行线被两条直线所截,那么所截得的线段对应成比例.也考查了三角形中位线的性质、勾股定理以及锐角三角函数的定义.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:线段OA⊥OB,点C为OB中点,D为线段OA上一点.连接AC,BD交于点P.
(1)如图1,当OA=OB,且D为OA中点时,求
AP
PC
的值;
(2)如图2,当OA=OB,且
AD
AO
=
1
4
时,求tan∠BPC的值.
(3)如图3,当AD:AO:OB=1:n:2
n
时,直接写出tan∠BPC的值.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:线段OA⊥OB,点C为OB中点,D为线段OA上一点.连接AC,BD交于点P.
(1)如图1,当OA=OB,且数学公式=数学公式时,求数学公式的值;
(2)如图2,当OA=OB,且数学公式时,①数学公式=______;②证明:∠BPC=∠A;
(3)如图3,当AD:AO:OB=1:n:数学公式时,直接写出tan∠BPC的值.

查看答案和解析>>

科目:初中数学 来源:第24章《相似形》中考题集(03):24.1 比例线段(解析版) 题型:解答题

已知:线段OA⊥OB,点C为OB中点,D为线段OA上一点.连接AC,BD交于点P.
(1)如图1,当OA=OB,且D为OA中点时,求的值;
(2)如图2,当OA=OB,且时,求tan∠BPC的值.
(3)如图3,当AD:AO:OB=1:n:时,直接写出tan∠BPC的值.

查看答案和解析>>

科目:初中数学 来源:2013年5月中考数学模拟试卷(4)(解析版) 题型:解答题

已知:线段OA⊥OB,点C为OB中点,D为线段OA上一点.连接AC,BD交于点P.
(1)如图1,当OA=OB,且D为OA中点时,求的值;
(2)如图2,当OA=OB,且时,求tan∠BPC的值.
(3)如图3,当AD:AO:OB=1:n:时,直接写出tan∠BPC的值.

查看答案和解析>>

同步练习册答案