精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标系中,直角梯形ABCO的边OC落在x轴的正半轴上,且ABOC,BC⊥OC,AB=4,BC=6,OC=8.正方形ODEF的两边分别落在坐标轴上,且它的面积等于直角梯形ABCO面积.将正方形ODEF沿x轴的正半轴平行移动,设它与直角梯形ABCO的重叠部分面积为S.
(1)分析与计算:求正方形ODEF的边长;
(2)操作与求解:
①正方形ODEF平行移动过程中,通过操作、观察,试判断S(S>0)的变化情况是______;
A、逐渐增大 B、逐渐减少 C、先增大后减少 D、先减少后增大
②当正方形ODEF顶点O移动到点C时,求S的值;
(3)探究与归纳:
设正方形ODEF的顶点O向右移动的距离为x,求重叠部分面积S与x的函数关系式.
(1)∵SODEF=SABCO=
1
2
(4+8)×6=36,(2分)
设正方形的边长为x,
∴x2=36,x=6或x=-6(舍去).(2分)

(2)由图形的移动可知,从OF出发,重叠部分面积逐渐增大,
当OF和BC重合时面积最大,继续移动时,面积将减小.
故选C.(2分)
过点A作AGBC交x轴于G,所以AE=DG=EB-AB=6-4=2.当正方形ODEF顶点O移动到点C时,OD=OC-CD=8-6=2;
于是重叠部分的面积是S=S梯形AMDG+S矩形AGCB=
1
2
(3+6)×2+6×4=33.(3分)

(3)①当0≤x<4时,重叠部分为三角形,如图①.
可得△OMO′△OAN,
MO′
6
=
x
4
,MO′=
3
2
x

∴S=
1
2
×
3
2
x•x=
3
4
x2.(1分)

②当4≤x<6时,重叠部分为直角梯形,如图②.
S=(x-4+x)×6×
1
2
=6x-12.(1分)

③当6≤x<8时,重叠部分为五边形,如图③.
可得,点A坐标为(4,6),故OA的解析式为:y=
3
2
x,
∴MD=
3
2
(x-6),AF=x-4.
S=
1
2
×(x-4+x)×6-
1
2
×
3
2
(x-6)(x-6)
=-
3
4
x2+15x-39.(1分)

④当8≤x<10时,重叠部分为五边形,如图④.
S=SAFO'DM-SBFO′C=-
3
4
x2+15x-39-(x-8)×6
=-
3
4
x2+9x+9.(1分)

⑤当10≤x≤14时,重叠部分为矩形,如图⑤.S=[6-(x-8)]×6=-6x+84.(1分)

(用其它方法求解正确,相应给分).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,-3)点,点P是直线BC下方的抛物线上一动点.
(1)分别求出图中直线和抛物线的函数表达式;
(2)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,梯形OABC的顶点A、C分别在y轴、x轴的正半轴上,AB⊥OA,二次函数
y=mx2-mx+2的图象经过A、B、C三点.
(1)求点A、B的坐标;
(2)当AC⊥OB时,求二次函数的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知以E(3,0)为圆心,以5为半径的⊙E与x轴交于A,B两点,与y轴交于C点,抛物线y=ax2+bx+c经过A,B,C三点,顶点为F.
(1)求A,B,C三点的坐标;
(2)求抛物线的解析式及顶点F的坐标;
(3)已知M为抛物线上一动点(不与C点重合),试探究:
①使得以A,B,M为顶点的三角形面积与△ABC的面积相等,求所有符合条件的点M的坐标;
②若探究①中的M点位于第四象限,连接M点与抛物线顶点F,试判断直线MF与⊙E的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,过点F(0,1)的直线y=kx+b与抛物线y=
1
4
x2交于M(x1,y1)和N(x2,y2)两点(其中x1<0,x2>0).
(1)求b的值.
(2)求x1•x2的值.
(3)分别过M,N作直线l:y=-1的垂线,垂足分别是M1和N1.判断△M1FN1的形状,并证明你的结论.
(4)对于过点F的任意直线MN,是否存在一条定直线m(m是常数),使m与以MN为直径的圆相切?如果有,请求出这条直线m的解析式;如果没有,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,以点A(3,0)为圆心,以5为半径的圆与x轴相交于点B、C,与y轴相交于点D、E.
(1)若抛物线y=
1
4
x2+bx+c
经过C、D两点,求此抛物线的解析式并判断点B是否在此抛物线上.
(2)若在(1)中的抛物线的对称轴有一点P,使得△PBD的周长最短,求点P的坐标.
(3)若点M为(1)中抛物线上一点,点N为其对称轴上一点,是否存在以点B、C、M、N为顶点的平行四边形?若存在,直接写出点M、N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图①,Rt△ABC中,∠B=90°,∠CAB=30度.它的顶点A的坐标为(10,0),顶点B的坐标为(5,5
3
)
,AB=10,点P从点A出发,沿A→B→C的方向匀速运动,同时点Q从点D(0,2)出发,沿y轴正方向以相同速度运动,当点P到达点C时,两点同时停止运动,设运动的时间为t秒.
(1)求∠BAO的度数.
(2)当点P在AB上运动时,△OPQ的面积S(平方单位)与时间t(秒)之间的函数图象为抛物线的一部分,(如图②),求点P的运动速度.
(3)求(2)中面积S与时间t之间的函数关系式及面积S取最大值时点P的坐标.
(4)如果点P,Q保持(2)中的速度不变,那么点P沿AB边运动时,∠OPQ的大小随着时间t的增大而增大;沿着BC边运动时,∠OPQ的大小随着时间t的增大而减小,当点P沿这两边运动时,使∠OPQ=90°的点P有几个?请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

下表给出了代数式x2+bx+c与x的一些对应值:
x01234
x2+bx+c3-13
(1)求b,c的值;
(2)设y=x2+bx+c,当x取何值时,y随x的增大而增大?
(3)函数y=x2+bx+c的图象经过怎样平移可得到函数y=x2的图象?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=-x2+mx过点A(4,0),O为坐标原点,Q是抛物线的顶点.
(1)求m的值;
(2)点P是x轴上方抛物线上的一个动点,过P作PH⊥x轴,H为垂足.有一个同学说:“在x轴上方抛物线上的所有点中,抛物线的顶点Q与x轴相距最远,所以当点P运动至点Q时,折线P-H-O的长度最长”,请你用所学知识判断:这个同学的说法是否正确.

查看答案和解析>>

同步练习册答案