精英家教网 > 初中数学 > 题目详情
如图,在梯形ABCD中,∠ABC=90º,AE∥CD交BC于E,O是AC的中点,AB=,AD=2,BC=3,下列结论:①∠CAE=30º;②AC=2AB;③S△ADC=2S△ABE;④BO⊥CD,其中正确的是(     )
A.①②③B.②③④C.①③④D.①②③④
D

试题分析:根据梯形的性质和直角三角形中的边角关系,逐个进行验证,即可得出结论.
解:在直角三角形ABC中,∵AB=,BC=3,
∴tan∠ACB=
∴∠ACB=30°.
∴∠BAC=60°,AC=2AB=2.②是正确的
∵AD∥BC,AE∥CD,
∴四边形ADCE是平行四边形.
∴CE=AD=2.
∴BE=1.
在直角三角形ABE中,tan∠BAE=,∠BAE=30°.
∴∠CAE=30°.①是正确的
∴AE=2BE=2.
∵AE=CE,
∴平行四边形ADCE是菱形.
∴∠DCE=∠DAE=60°.
∴∠BAE=30°
又∵∠CAE=30°
∴∠BAO=60°
又∵AB=AO
∴△AOB是等边三角形,
∴∠ABO=60°.
∴∠OBE=30°.
∴BO⊥CD.④是正确的.
∵AD∥BC,AD=2BE.
∴SADC=2SABE,③是正确的.
∴①②③④都是正确的,故选D.
点评:此类问题难度较大,在中考中比较常见,一般在压轴题中出现,需特别注意.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

如图,已知△ABC≌△CDA,∠BAC=60°,∠DAC=23°,则∠D=    

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(1)如图1,已知△ABC,以AB、AC为边向△ABC外作等边△ABD和等边△ACE,连接BE,CD,请你完成图形,并证明:BE=CD;(尺规作图,不写做法,保留作图痕迹);

(2)如图2,已知△ABC,以AB、AC为边向外作正方形ABFD和正方形ACGE,连接BE,CD,BE与CD有什么数量关系?简单说明理由;

(3)运用(1)、(2)解答中所积累的经验和知识,完成下题:
如图3,要测量池塘两岸相对的两点B,E的距离,已经测得∠ABC=45°,∠CAE=90°,AB=BC=100米,AC=AE,求BE的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,点的边上一点,于点,若,求证:.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

将两张矩形纸片如图所示摆放,使其中一张矩形纸片的一个顶点恰好落在另一张矩形纸片的一条边上,则∠1+∠2=        度.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

一个正方形和两个等边三角形的位置如6所示,若∠3 = 50°,则∠1+∠2 =
A.90°B.100°C.130°D.180°

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,△ABC中,DE垂直平分AC交AB于E,∠A=30°,∠ACB=80°,则∠BCE=          °。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

一节数学课后,老师布置了一道课后练习题:
如图,已知在Rt△ABC中,AB=BC,∠ABC=90°,BO⊥AC,于点O,点PD分别在AO和BC上,PB=PD,DE⊥AC于点E,求证:△BPO≌△PDE.

(1)理清思路,完成解答(2)本题证明的思路可用下列框图表示:

根据上述思路,请你完整地书写本题的证明过程.
(2)特殊位置,证明结论
若PB平分∠ABO,其余条件不变.求证:AP=CD.
(3)知识迁移,探索新知
若点P是一个动点,点P运动到OC的中点P′时,满足题中条件的点D也随之在直线BC上运动到点D′,请直接写出CD′与AP′的数量关系.(不必写解答过程)

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

若△ABC∽△DEF,且对应边BC与EF的比为2∶3,则△ABC与△DEF的面积等于______.

查看答案和解析>>

同步练习册答案