精英家教网 > 初中数学 > 题目详情
如图,已知双曲线y=
k
x
经过点D(6,1),点C是双曲线第三象限上的动点,过C作CA⊥x轴,过D作DB⊥y轴,垂足分别为A,B,连接AB,BC.
(1)求k的值;
(2)若△BCD的面积为12,求直线CD的解析式;
(3)判断AB与CD的位置关系,并说明理由.
(1)∵双曲线y=
k
x
经过点D(6,1),
k
6
=1,
解得k=6;

(2)设点C到BD的距离为h,
∵点D的坐标为(6,1),DB⊥y轴,
∴BD=6,
∴S△BCD=
1
2
×6•h=12,
解得h=4,
∵点C是双曲线第三象限上的动点,点D的纵坐标为1,
∴点C的纵坐标为1-4=-3,
6
x
=-3,
解得x=-2,
∴点C的坐标为(-2,-3),
设直线CD的解析式为y=kx+b,
-2k+b=-3
6k+b=1

解得
k=
1
2
b=-2

所以,直线CD的解析式为y=
1
2
x-2;

(3)ABCD.
理由如下:∵CA⊥x轴,DB⊥y轴,设点C的坐标为(c,
6
c
),点D的坐标为(6,1),
∴点A、B的坐标分别为A(c,0),B(0,1),
设直线AB的解析式为y=mx+n,
mc+n=0
n=1

解得
m=-
1
c
n=1

所以,直线AB的解析式为y=-
1
c
x+1,
设直线CD的解析式为y=ex+f,
ec+f=
6
c
6e+f=1

解得
e=-
1
c
f=
c+6
c

∴直线CD的解析式为y=-
1
c
x+
c+6
c

∵AB、CD的解析式k都等于-
1
c

∴AB与CD的位置关系是ABCD.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,已知正比例函数和反比例函数的图象都经过点M(-2,-1),且点P(-1,-2)为双曲线上的一点,过P作PA垂直x轴于点A:
(1)写出正比例函数和反比例函数的关系式;
(2)若点Q为直线MO上一动点(不与点M、O重合),过点Q作QB⊥y轴于点B,是否存在点Q,使△OBQ与△OAP面积相等?如果存在,请求出点Q的坐标;如果不存在,请说明理由;
(3)在(2)的条件下,在平面内找一点C,使以O、P、C、Q为顶点的四边形为平行四边形,请直接写出C点坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,一次函数y=-2x+b的图象与反比例函数y=
k
x
的图象交于点A(1,6)、B(3,2)两点.
(1)求b的值;
(2)求反比例函数的解析式;
(3)根据图象填空,当反比例函数小于一次函数的值时,x的取值范围是______;
(4)作AD⊥y轴,BC⊥x轴,垂足分别是D、C,五边形ABCOD的面积是14,求△ABO的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知直线y=4-x与反比例函数y=
m
x
(m>0,x>0)的图象交于A,B两点,与x轴,y轴分别相交于C,D两点.
(1)如果点A的横坐标为1,利用函数图象求关于x的不等式4-x<
m
x
的解集;
(2)是否存在以AB为直径的圆经过点P(1,0)?若存在,求出m的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,P是反比例函数y=
k
x
图象上一点,直线PQ交于x轴于Q点,PMX轴交y轴于M,且△OPQ是等腰直角三角形,△OPM的面积为1.
(1)求反比例函数的表达式;
(2)求Q点的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

某种蓄电池的电压为定值,使用此电源时,电流I(A)与可变电阻R(Ω)之间的函数关系如图所示,当用电器的电流为10A时,用电器的可变电阻为______Ω.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,已知△ABO的顶点A和AB边的中点C都在双曲线y=
4
x
(x>0)的一个分支上,点B在x轴上,CD⊥OB于D,则△AOC的面积为(  )
A.2B.3C.4D.
3
2

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,⊙O的直径AB=12,AM和BN是它的两条切线,切点分别为A,B,DE切⊙O于E,交AM于D,交BN于C;设AD=x,BC=y,则y与x的函数关系式是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,双曲线y=
k
x
(x>0)
经过四边形OABC的顶点A、C,∠B=90°,OC平分OA与x轴的夹角,ABx轴,且S四边形OABC=2,将△ABC沿AC翻折后得△AB′C,B′点落在OA上,则k=______.

查看答案和解析>>

同步练习册答案