【题目】已知反比例函数y1=的图象与一次函数y2=ax+b的图象交于点A(1,4)和点B(m,-2).
(1)求这两个函数的关系式;
(2)观察图象,写出使得y1>y2成立的自变量x的取值范围;
(3)如果点C与点A关于x轴对称,求△ABC的面积.
【答案】(1) y1=,y2=2x+2;(2) x<-2或0<x<1;(3)12
【解析】试题分析:(1)把点A坐标代入反比例函数求出m的值,也就求出了反比例函数解析式,再把点B的坐标代入反比例函数解析式求出n的值,得到点B的坐标,然后利用待定系数法即可求出一次函数解析式;
(2)找出反比例函数在直线图形的上方的自变量x的取值即可;
(3)根据轴对称的性质求得C的坐标,过B点作BD⊥AC于D,求得AC、BD的长,根据三角形面积公式求得即可;
试题解析:
(1)∵点A(1,4)在反比例函数y1= 的图象上,
∴k=1×4=4,
∴反比例函数的表达式为y1=,
∵点B(m,-2)也在反比例函数y1=的图象上,
∴-2= ,解得m=-2,即B(-2,-2),
把点A(1,4),点B(-2,-2)代入一次函数y1=kx+b中,得
解得:
∴一次函数的表达式为y2=2x+2;
(2)∵y1>y2,
∴取反比例函数在直线图形的上方时自变量x的值即可,
由图形可得:当x<-2或0<x<1时,反比例函数在直线图形的上方,
∴当y1>y2成立的自变量x的取值范围x<-2或0<x<1;
(3)如图,过B点作BD⊥AC于D,如图所示:
∵点C与点A关于x轴对称,
∴C(1,-4),
∴AC=8,BD=3,
∴S△ABC= ACBD=12。
科目:初中数学 来源: 题型:
【题目】从广州去某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍.
(1)求普通列车的行驶路程;
(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定四边形ABCD为平行四边形的是( )
A. AB∥CD,AD∥BC B. OA=OC,OB=OD C. AD=BC,AB∥CD D. AB=CD,AD=BC
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知△ABC的三个顶点的坐标分别为A(﹣5,0)、B(﹣2,3)、C(﹣1,0)
(1)画出△ABC向下平移3个单位的△A1B1C1;
(2)将△A1B1C1绕原点O旋转180°,画出旋转后的△A2B2C2;
(3)在(2)中,线段A1B1 扫过的面积为 .(设图中小正方的边长为1个单位长度)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形网格中,每个小正方形的边长为1,对于两个点P,Q和线段AB,给出如下定义:如果在线段AB上存在点M,N(M,N可以重合)使得PM=QN,那么称点P与点Q是线段AB的一对关联点.
(1)如图,在Q1,Q2,Q3这三个点中,与点P是线段AB的一对关联点的是 ;
(2)直线l∥线段AB,且线段AB上的任意一点到直线l的距离都是1.若点E是直线l上一动点,且点E与点P是线段AB的一对关联点,请在图中画出点E的所有位置.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,下列条件:①∠1=∠3,②∠2+∠4=180°,③∠4=∠5,④∠2=∠3,⑤∠6=∠2+∠3,能判断直线l1∥l2的个数是( )
A. 5B. 4C. 3D. 2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义一种新运算:a⊕b=
(1)请写出函数y=x⊕1的解析式,并在所给的平面直角坐标系中画出该函数图象;
(2)观察(1)中图象,探究得到y的最小值是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E,
(1)求证:四边形ADCE为矩形;
(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com