精英家教网 > 初中数学 > 题目详情
精英家教网如图所示,四边形EFGH是三角形ABC的内接矩形,AD⊥BC,垂足为D,BC=21cm,AD=14cm,EF:FG=1:2,求矩形EFGH的面积.
分析:先设矩形的边长EF=x,利用矩形的性质可知EH∥BC,利用相识三角形判定定理,可得△AEH∽△ABC,再利用相似三角形的性质可得比例线段,可求x,即EF,亦可求得FG,可求出矩形EFGH的面积.
解答:解:如图,设矩形的边长EF=x,则FG=2x,
∵四边形EFGH是三角形ABC的内接矩形,
∴EH∥BC,EH=FG,
∴△AEH∽△ABC,
又∵AD⊥BC,则ID=x,AI=AD-ID,
EH
BC
=
AI
AD
,BC=21cm,AD=14cm,
2x
21
=
14-x
14

解得,x=6cm,即2x=12cm,
∴S矩形EFGH=EF×FG=6×12=72cm2
答:矩形EFGH的面积为72cm2
点评:本题主要考查了矩形的性质和相似三角形的判定与性质,知道相似三角形的对应高之比就等于对应边之比,即相识比.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

30、如图所示,四边形ABCD是正方形,G是BC上任意一点(点G与D、C不重合),AE⊥DG于E.CF∥AE交DG于F.
(1)在图中找出一对全等三角形,并加以证明;
(2)求证:AE=FC+EF.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,四边形ABCD是正方形,M是AB延长线上一点,直角三角尺的一条直角边经过点D,且直角顶点E在AB边上滑动(点E不与点A,B重合),另一直角边与∠CBM的平分线BF相交于点F.
(1)如图1所示,当点E在AB边的中点位置时:
①通过测量DE,EF的长度,猜想DE与EF满足的数量关系是
 

②连接点E与AD边的中点N,猜想NE与BF满足的数量关系是
 

③请证明你的上述两个猜想;
(2)如图2所示,当点E在AB边上的任意位置时,请你在AD边上找到一点N,使得NE=B精英家教网F,进而猜想此时DE与EF有怎样的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

13、(Ⅰ)已知:如图,平行四边形ABCD的对角线AC、BD相交于点O,EF过点O与AB、CD分别相交于点E、F.
求证:BE=DF.
(Ⅱ)请写出使如图所示的四边形ABCD为平行四边形的条件(例如,填:AB∥CD且AD∥BC.在不添加辅助线的情况下,写出除上述条件外的另外四组条件,将答案直接写在下面的横线上.)
(1):
∠DAB=∠DCB且∠ADC=∠ABC

(2):
AB=CD且AD=BC

(3):
OA=OC且OD=OB

(4):
AB∥CD且∠DAB=∠DCB

查看答案和解析>>

科目:初中数学 来源: 题型:

25、友情提示:本题有A、B两题,请你任选一题作答,A题满分9分,B题满分12分.若两题都做,只能按A题评分.
(A题)如图所示,四边形OABC与ODEF均为正方形,CF交OA于P,交DA于Q.
(1)求证:AD=CF.
(2)AD与CF垂直吗?说说你的理由.
(3)当正方形ODEF绕O点在平面内旋转时,(1),(2)的结论是否有变化(不需说明理由).
(B题)如图所示,用两个全等的正方形ABCD和CDFE拼成一矩形ABEF,把一个足够大的直角三角尺的直角顶点与这个矩形的边AF的中点D重合,且将直角三角尺绕点D按逆时针方向旋转.

(1)当直角三角尺的两直角边分别与矩形ABEF的两边BE、EF相交于点G、H时,通过观察或测量BG与EH的长度,你能得到什么结论?并证明你的结论.
(2)当直角三角尺的两直角边分别与BE的延长线、EF的延长线相交于点G、H时,你在(1)中得到的结论还成立吗?请画出图形并简要说明理由.

查看答案和解析>>

同步练习册答案