精英家教网 > 初中数学 > 题目详情

【题目】小张承包了一片荒山,他想把这片荒山改造成一个苹果园,现在有一种苹果树苗,它的成活率如下表所示:

移植棵数

成活数

成活率

移植棵数

成活数

成活率

50

47

1500

1335

270

235

3500

3203

400

369

7000

6335

750

662

14000

12628

下面有四个推断:

①当移植的树数是1500时,表格记录成活数是1335,所以这种树苗成活的概率是

②随着移植棵数的增加,树苗成活的频率总在附近摆动,显示出一定的稳定性,可以估计树苗成活的概率是

③若小张移植10000棵这种树苗,则可能成活9000棵;

④若小张移植20000棵这种树苗,则一定成活18000棵.

其中合理的是  

A. ①③B. ①④C. ②③D. ②④

【答案】C

【解析】

随着移植棵数的增加,树苗成活的频率总在附近摆动,显示出一定的稳定性,可以估计树苗成活的概率是,据此进行判断即可.

解:当移植的树数是1 500时,表格记录成活数是1 335,这种树苗成活的概率不一定是,故错误;

随着移植棵数的增加,树苗成活的频率总在附近摆动,显示出一定的稳定性,可以估计树苗成活的概率是,故正确;

若小张移植10 000棵这种树苗,则可能成活9 000棵,故正确;

若小张移植20 000棵这种树苗,则不一定成活18 000棵,故错误.

故选:C

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】问题原型:在图①的矩形MNPQ中,点E、F、G、H分别在NP、PQ、QM、MN上,若∠1=2=3=4,则称四边形EFGH为矩形MNPQ的反射四边形.

操作与探究:在图②,图③的矩形ABCD中,AB=4,BC=8E、F分别在BC、CD边上,试利用正方形网格分别作出两图中矩形ABCD的反射四边形EFGH,并求出每个反射四边形EFGH的周长.

发现与应用:由前面的操作可以发现一个矩形有不同的反射四边形,且这些反射四边形的周长都相等,若在图①矩形MNPQ中,MN=3,NP=4则其反射四边形EFGH的周长为  

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了了解中学生的身体发育情况,对某一中学同年龄的50名女学生的身高进行了测量,结果如下(单位:厘米)

完成下面的频率分布表.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,有一个可以自由转动的转盘被平均分成3个扇形,分别标有1、2、3三个数字,小王和小李各转动一次转盘为一次游戏,当每次转盘停止后,指针所指扇形内的数为各自所得的数,一次游戏结束得到一组数(若指针指在分界线时重转).

(1)请你用树状图或列表的方法表示出每次游戏可能出现的所有结果;

(2)求每次游戏结束得到的一组数恰好是方程x2﹣3x+2=0的解的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】从甲地到乙地的火车原来的平均速度是100千米每小时,经过两次提速后平均速度为121千米每小时,这两次提速的百分率相同.

1)求该火车每次提速的百分率;

2)若甲乙两地铁路长220千米,求第一次提速后从甲地到乙地所用的时间比提速前少用了多少小时.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】尺规作图1

已知:如图,线段AB和直线且点B在直线上

求作:点C,使点C在直线上并且使为等腰三角形.

作图要求:保留作图痕迹,不写作法,做出所有符合条件的点C

特例思考:

如图一,当时,符合中条件的点C______个;如图二,当时,符合中条件的点C______

拓展应用:

如图,,点MN在射线OA上,,点P是射线OB上的点若使点PMN构成等腰三角形的点P有且只有三个,求x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在半径为17dm的圆柱形油罐内装进一些油后,横截面如图.

1)若油面宽AB=16dm,求油的最大深度.

2)在(1)的条件下,若油面宽变为CD=30dm,求油的最大深度上升了多少dm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,对于平面上不大于,我们给出如下定义:若点P的内部或边界上,作于点E,.于点,则称为点P相对于的“优点距离”,记为

如图2,在平面直角坐标系xOy中,对于,点P为第一象限内或两条坐标轴正半轴上的动点,且满足5,点P运动形成的图形记为图形G

1)满足条件的其中一个点P的坐标是 __,图形G与坐标轴围成图形的面积等于 __

2)设图形Gx轴的公共点为点A,如图3,已知,求的值;

3)如果抛物线经过(2)中的AB两点,点QAB两点之间的物线上(点Q可与AB两点重合),求当取最大值时,点Q 的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列两则材料,回答问题:

材料一:平面直角坐标系中,对点Ax1y1),Bx2y2)定义一种新的运算:AB=x1x2+y1y2

例如:若A12),B34),则AB=1×3+2×4=11

材料二:平面直角坐标系中,过横坐标不同的两点Ax1y1),Bx2y2)的直线的斜率为kAB=.由此可以发现若kAB==1,则有y1-y2=x1-x2,即x1-y1=x2-y2.反之,若x1x2y1y2满足关系式x1-y1=x2-y2,则有y1-y2=x1-x2,那么kAB=═1

1)已知点M-46),N32),则MN=______,若点AB的坐标分别为(x1y1),(x2y2)(x1x2),且满足关系式x1+y1=x2+y2,那么kAB=______

2)横坐标互不相同的三个点CDE满足CD=DE,且D点的坐标为(22),过点DDFy轴,交直线CE于点F,若DF=8,请结合图象,求直线CE与坐标轴围成的三角形的面积.

查看答案和解析>>

同步练习册答案