精英家教网 > 初中数学 > 题目详情

【题目】已知抛物线c:y=x2+2x﹣3,将抛物线c平移得到抛物线c′,如果两条抛物线,关于直线x=1对称,那么下列说法正确的是(  )

A. 将抛物线c沿x轴向右平移个单位得到抛物线c′ B. 将抛物线c沿x轴向右平移4个单位得到抛物线c′

C. 将抛物线c沿x轴向右平移个单位得到抛物线c′ D. 将抛物线c沿x轴向右平移6个单位得到抛物线c′

【答案】B

【解析】∵抛物线Cy=x2+2x﹣3=x+12﹣4

∴抛物线对称轴为x=﹣1

∴抛物线与y轴的交点为A0﹣3).

则与A点以对称轴对称的点是B2﹣3).

若将抛物线C平移到C′,并且CC′关于直线x=1对称,就是要将B点平移后以对称轴x=1A点对称.

B点平移后坐标应为(4﹣3),

因此将抛物线C向右平移4个单位.

故选:B

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知一次函数的图象经过(23)和(-1-3)两点.

1)在平面直角坐标系中画出这个函数的图象;

2)求这个一次函数的关系式.

3)求出该函数图像与x轴的交点坐标

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,AB=CD,对角线AC,BD相交于点O,AEBD于点E,CFBD于点F,连接AF,CE,若DE=BF,则下列结论:CF=AE;OE=OF;四边形ABCD是平行四边形;图中共有四对全等三角形.其中正确结论的个数是

A.4 B.3 C2 D.1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等腰直角△ABC中,∠ACB=90°O是斜边AB的中点,点DE分别在直角边ACBC上,且∠DOE=90°DEOC于点P.则下列结论:(1)AD+BE=AC(2)AD2+BE2=DE2(3)ABC的面积等于四边形CDOE面积的2倍;(4)OD=OE.其中正确的结论有( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,A、B为x轴上两点,C、D为y轴上的两点,经过点A、C、B的抛物线的一部分c1与经过点A、D、B的抛物线的一部分c2组合成一条封闭曲线,我们把这条封闭曲线成为“蛋线”.已知点C的坐标为(0,﹣ ),点M是抛物线C2:y=mx2﹣2mx﹣3m(m<0)的顶点.

(1)求A、B两点的坐标;

(2)“蛋线”在第四象限上是否存在一点P,使得△PBC的面积最大?若存在,求出△PBC面积的最大值;若不存在,请说明理由;

(3)当△BDM为直角三角形时,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(发现问题)如图①,在△ABC中,分别以AB、AC为斜边,向△ABC的形外作等腰直角三角形,直角的顶点分别为D、E,点F、M、G分别为AB、BC、AC边的中点,求证:△DFM≌△MGE.

(拓展探究)如图②,在△ABC中,分别以AB、AC为底边,向△ABC的形外作等腰三角形,顶角的顶点分别为D、E,且∠BAD+∠CAE=90°.点F、M、G分别为AB、BC、AC边的中点,若AD=5,AB=6,DFM的面积为a,直接写出△MGE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解方程

1 2

3 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,点P(-2,3)关于直线y=x-1对称的点的坐标是_______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,在△ABC与△ADE中,AB=AC,AD=AE,∠A是公共角。

(1)BD与CE的数量关系是:BD______CE;

(2)把图①△ABC绕点A旋转一定的角度,得到如图②所示的图形。

①求证:BD=CE;

②BD与CE所在直线的夹角与∠DAE的数量关系是什么?说明理由。

(3)若AD=10,AB=6,把图①中的△ABC绕点A顺时针旋转α度(0°<α≤360)直接写出BD长度的取值范围。

查看答案和解析>>

同步练习册答案