精英家教网 > 初中数学 > 题目详情
(2013•岳阳)如图,已知以E(3,0)为圆心,以5为半径的⊙E与x轴交于A,B两点,与y轴交于C点,抛物线y=ax2+bx+c经过A,B,C三点,顶点为F.
(1)求A,B,C三点的坐标;
(2)求抛物线的解析式及顶点F的坐标;
(3)已知M为抛物线上一动点(不与C点重合),试探究:
①使得以A,B,M为顶点的三角形面积与△ABC的面积相等,求所有符合条件的点M的坐标;
②若探究①中的M点位于第四象限,连接M点与抛物线顶点F,试判断直线MF与⊙E的位置关系,并说明理由.
分析:(1)由题意可直接得到点A、B的坐标,连接CE,在Rt△OCE中,利用勾股定理求出OC的长,则得到点C的坐标;
(2)已知点A、B、C的坐标,利用交点式与待定系数法求出抛物线的解析式,由解析式得到顶点F的坐标;
(3)①△ABC中,底边AB上的高OC=4,若△ABC与△ABM面积相等,则抛物线上的点M须满足条件:|yM|=4.因此解方程yM=4和yM=-4,可求得点M的坐标;
②如解答图,作辅助线,可求得EM=5,因此点M在⊙E上;再利用勾股定理求出MF的长度,则利用勾股定理的逆定理可判定△EMF为直角三角形,∠EMF=90°,所以直线MF与⊙E相切.
解答:解:(1)∵以E(3,0)为圆心,以5为半径的⊙E与x轴交于A,B两点,
∴A(-2,0),B(8,0).
如解答图所示,连接CE.
在Rt△OCE中,OE=AE-OA=5-2=3,CE=5,
由勾股定理得:OC=
CE2-OE2
=
52-32
=4.
∴C(0,-4).

(2)∵点A(-2,0),B(8,0)在抛物线上,
∴可设抛物线的解析式为:y=a(x+2)(x-8).
∵点C(0,-4)在抛物线上,
∴-4=a×2×-8,解得a=
1
4

∴抛物线的解析式为:y=
1
4
(x+2)(x-8)=
1
4
x2-
3
2
x-4=
1
4
(x-3)2-
25
4

∴顶点F的坐标为(3,-
25
4
).

(3)①∵△ABC中,底边AB上的高OC=4,
∴若△ABC与△ABM面积相等,则抛物线上的点M须满足条件:|yM|=4.
(I)若yM=4,则
1
4
x2-
3
2
x-4=4,
整理得:x2-6x-32=0,解得x=3+
41
或x=3-
41

∴点M的坐标为(3+
41
,4)或(3-
41
,4);
(II)若yM=-4,则
1
4
x2-
3
2
x-4=-4,
整理得:x2-6x=0,解得x=6或x=0(与点C重合,故舍去).
∴点M的坐标为(6,-4).
综上所述,满足条件的点M的坐标为:(3+
41
,4),(3-
41
,4)或(6,-4).
②直线MF与⊙E相切.理由如下:
由题意可知,M(6,-4).
如解答图所示,连接EM,MF,过点M作MG⊥对称轴EF于点G,
则MG=3,EG=4.
在Rt△MEG中,由勾股定理得:ME=
MG2+EG2
=
32+42
=5,
∴点M在⊙E上.
由(2)知,F(3,-
25
4
),∴EF=
25
4

∴FG=EF-EG=
9
4

在Rt△MGF中,由勾股定理得:MF=
MG2+FG2
=
32+(
9
4
)
2
=
15
4

在△EFM中,∵EM2+MF2=52+(
15
4
2=(
25
4
2=EF2
∴△EFM为直角三角形,∠EMF=90°.
∵点M在⊙E上,且∠EMF=90°,
∴直线MF与⊙E相切.
点评:本题是代数几何综合题,主要考查了抛物线与圆的相关知识,涉及到的考点有二次函数的图象与性质、勾股定理及其逆定理、切线的判定、解一元二次方程等.第(3)①问中,点M在x轴上方或下方均可能存在,注意不要漏解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•岳阳)如图,点P(-3,2)处的一只蚂蚁沿水平方向向右爬行了5个单位长度后的坐标为
(2,2)
(2,2)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•岳阳)如图所示的3×3方格形地面上,阴影部分是草地,其余部分是空地,一只自由飞翔的小鸟飞下来落在草地上的概率为
1
3
1
3

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•岳阳)夏季荷花盛开,为了便于游客领略“人从桥上过,如在河中行”的美好意境,某景点拟在如图所示的矩形荷塘上架设小桥.若荷塘周长为280m,且桥宽忽略不计,则小桥总长为
140
140
m.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•岳阳)如图,反比例函数y=
kx
与一次函数y=x+b的图象,都经过点A(1,2)
(1)试确定反比例函数和一次函数的解析式;
(2)求一次函数图象与两坐标轴的交点坐标.

查看答案和解析>>

同步练习册答案