精英家教网 > 初中数学 > 题目详情
将点A(4
3
,0)绕着原点顺时针方向旋转60°得到点B,则点B的坐标是
 
分析:由题意可知,A(4
3
,0).绕着原点顺时针方向旋转60°得B,我们可以用作图法来完成,过B作BD⊥x轴,BC⊥y轴,知OB=4
3
,∠BOC=30°,根据勾股定理,BC=2
3
,OC=6,又因为点B在第四象限,故B(2
3
,-6).
解答:精英家教网解:我们可画出A旋转过后的图形,如图,知,
OB=4
3
,∠BOC=30°,
∴OB=2
3

由勾股定理知,OC=6,
又∵B位于第四象限,
故B(2
3
,-6).
点评:考查学生对旋转问题的熟练应用,以及掌握数形结合的数学思想来解决问题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,Rt△ABC中,∠ACB=90°,∠CAB=30°,BC=2,O、H分别为边AB,AC的中点,将△ABC绕点B顺时针旋转120°到△A1BC1的位置,则整个旋转过程中线段OH所扫过部分的面积(即阴影部分面积)为(  )
A、
7
3
π-
7
8
3
B、
4
3
π+
7
8
3
C、π
D、
4
3
π+
3

查看答案和解析>>

科目:初中数学 来源: 题型:

图1是边长分别为4
3
和3的两个等边三角形纸片ABC和C′D′E′叠放在一起(C与C′重合).
(1)操作:固定△ABC,将△C′D′E′绕点C顺时针旋转30°得到△CDE,连接AD、BE,CE的延长线交AB于F(图2);
探究:在图2中,线段BE与AD之间有怎样的大小关系?试证明你的结论.
(2)操作:将图2中的△CDE,在线段CF上沿着CF方向以每秒1个单位的速度平移,平移后的△CDE设为△PQR(图3);
请问:经过多少时间,△PQR与△ABC重叠部分的面积恰好等于
7
3
4

(3)操作:图1中△C′D′E′固定,将△ABC移动,使顶点C落在C′E′的中点,边BC交D′E′于点M,边AC交D′C′于点N,设
∠AC C′=α(30°<α<90,图4);
探究:在图4中,线段C′N•E′M的值是否随α的变化而变化?如果没有变化,请你求出C′N•E′M的值,如果有变化,请你说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•营口)如图1,△ABC为等腰直角三角形,∠ACB=90°,F是AC边上的一个动点(点F与A、C不重合),以CF为一边在等腰直角三角形外作正方形CDEF,连接BF、AD.
(1)①猜想图1中线段BF、AD的数量关系及所在直线的位置关系,直接写出结论;
②将图1中的正方形CDEF,绕着点C按顺时针(或逆时针)方向旋转任意角度α,得到如图2、图3的情形.图2中BF交AC于点H,交AD于点O,请你判断①中得到的结论是否仍然成立,并选取图2证明你的判断.
(2)将原题中的等腰直角三角形ABC改为直角三角形ABC,∠ACB=90°,正方形CDEF改为矩形CDEF,如图4,且AC=4,BC=3,CD=
43
,CF=1,BF交AC于点H,交AD于点O,连接BD、AF,求BD2+AF2的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,梯形OABC中,BC∥AO,∠BAO=90°,B(-3
3
,3),直线OC的解析式为y=-
3
x,将△OBC绕点C顺时针旋转60°后,O到O1,B到B1,得△O1B1C.
(1)求证:点O1在x轴上;
(2)将点O1运动到点M(-4
3
,0),求∠B1MC的度数;
(3)在(2)的条件下,将直线MC向下平移m个单位长度,设直线MC与线段AB交于点P,与线段OC的交于点Q,四边形OAPQ的面积为S,求S与m的函数关系式,并求出m的取值范围.

查看答案和解析>>

同步练习册答案