【题目】如图,已知抛物线y=mx2﹣4mx+3m(m>0)与x轴的交点为A,B,与y轴的交点为C,D为抛物线的顶点.
(1)直接写出各点坐标C( , ),D( , );(用m表示)
(2)试说明无论m为何值,抛物线一定经过两个定点并求出这两个定点的坐标;
(3)①将线段AC绕点A顺时针旋转90°得到AC′,求点C′的坐标;
②连接DC',AD,是否存在m,使得△ADC′为等腰三角形?若存在,请求出m;若不存在,请说明理由.
【答案】(1)0,3m,2,﹣m;(2)见解析;(3)①点C'坐标为(1+3m,1),②存在m,m的值为(2+)或(2﹣)时,△ADC′为等腰三角形.
【解析】
(1)令x=0即求得点C坐标,对抛物线解析式进行配方即求得顶点D坐标.
(2)对抛物线解析式进行因式分解,得y=m(x-1)(x-3),由于m大于0,所以当(x-1)(x-3),即有y=0,求得抛物线过定点(1,0)和(3,0).
(3)①由哦(2)得A(1,0),即OA=1.过点C'作x轴垂线C'E,易证△AEC'≌△COA,所以AE=CO=3m,C'E=OA=1,求得点C'(1+3m,1).
②由两点间距离公式用m表示AC'2、AD2、C'D2,易得AC'≠AD,AD≠C'D,所以△ADC'要成为等腰三角形,只能AC'=C'D,把含m的式子代入解方程即求得m的值.
(1)∵x=0时,y=mx2﹣4mx+3m=3m
∴C(0,3m)
∵y=mx2﹣4mx+3m=m(x﹣2)2﹣m
∴D(2,﹣m)
故答案为:0,3m,2,﹣m.
(2)证明:y=mx2﹣4mx+3m=m(x2﹣4x+3)=m(x﹣1)(x﹣3)
∵m>0
∴当(x﹣1)(x﹣3)=0时,y=0
解得:x1=1,x2=3
∴抛物线一定经过定点(1,0)和(3,0)
(3)
①过点C'作C'E⊥x轴于点E
∴∠AEC'=90°
由(2)可得,A(1,0),B(3,0)
∴OA=1
∵C(0,3m)
∴OC=3m
∵将线段AC绕点A顺时针旋转90°得到AC′
∴AC'=AC,∠CAC'=90°
∴∠OAC+∠C'AE=∠OAC+∠ACO=90°
∴∠C'AE=∠ACO
在△AEC'与△COA中
∴△AEC'≌△COA(AAS)
∴AE=CO=3m,C'E=OA=1
∴OE=OA+AE=1+3m
∴点C'坐标为(1+3m,1)
②存在m,使得△ADC′为等腰三角形.
∵A(1,0),C'(1+3m,1),D(2,﹣m)
∴AC'2=(1+3m﹣1)2+12=9m2+1,AD2=(2﹣1)2+(﹣m)2=1+m2,C'D2=(1+3m﹣2)2+(1+m)2=10m2﹣4m+2
∴AC'2>AD2,AD2<C'D2
即AC'≠AD,AD≠C'D
∴△ADC′为等腰三角形时,AC'=C'D
∴9m2+1=10m2﹣4m+2
解得:m1=2+,m2=2﹣
∴m的值为(2+)或(2﹣)时,△ADC′为等腰三角形.
科目:初中数学 来源: 题型:
【题目】在菱形中,,点是射线上一动点,以为边向右侧作等边,点的位置随点的位置变化而变化.
(1)如图1,当点在菱形内部或边上时,连接,与的数量关系是 ,与的位置关系是 ;
(2)当点在菱形外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,
请说明理由(选择图2,图3中的一种情况予以证明或说理).
(3) 如图4,当点在线段的延长线上时,连接,若 , ,求四边形的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“校园安全”受到全社会的广泛关注,我市某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了如图两幅尚不完整的统计图,请你根据统计图中所提供的信息解答下列问题:
(1)接受问卷调查的学生共有 人,扇形统计图中“了解”部分所对应扇形的圆心角为 °;
(2)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数为 人;
(3)若从对校园安全知识达到“了解”程度的3个女生A、B、C和2个男生M、N中分别随机抽取1人参加校园安全知识竞赛,请用树状图或列表法求出恰好抽到女生A的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:将函数l的图象绕点P(m,0)旋转180°,得到新的函数l'的图象,我们称函数l'是函数关于点P的相关函数.
例如:当m=1时,函数y=(x+1)2+5关于点P(1,0)的相关函数为y=﹣(x﹣3)2﹣5.
(1)当m=0时
①一次函数y=x﹣1关于点P的相关函数为 ;
②点(,﹣)在二次函数y=﹣ax2﹣ax+1(a≠0)关于点P的相关函数的图象上,求a的值.
(2)函数y=(x﹣1)2+2关于点P的相关函数y=﹣(x+3)2﹣2,则m= ;
(3)当m﹣1≤x≤m+2时,函数y=x2﹣mx﹣m2关于点P(m,0)的相关函数的最大值为6,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(9分)为弘扬 “东亚文化”,某单位开展了“东亚文化之都”演讲比赛,在安排1位女选手和3位男选手的出场顺序时,采用随机抽签方式.
(1)请直接写出第一位出场是女选手的概率;
(2)请你用画树状图或列表的方法表示第一、二位出场选手的所有等可能结果,并求出他们都是男选手的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在边长为1个单位长度的小正方形组成的网格中,△ABC为格点三角形(顶点在网格线的交点).
(1)将△ABC向上平移2个单位得到△A1B1C1,请画出△A1B1C1;
(2)将△ABC绕着某点O逆时针方向旋转90°后,得到△A2B2C2,请画出旋转中心O,并直接写出在此旋转过程中,线段AB扫过的区域的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,自左至右,第1个图由1个正六边形、6个正方形和6个等边三角形组成;第2个图由2个正六边形、11个正方形和10个等边三角形组成;第3个图由3个正六边形、16个正方形和14个等边三角形组成;…,按照此规律,第n个图中正方形和等边三角形的个数之和为( )个.
A.9nB.6nC.9n+3D.6n+3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠MAN=30°,在射线AN上取一点B,使AB=4 cm,过点B作BC⊥AM于点C,点D为边AB上的动点(点D不与点A,点B重合),连接CD,过点D作ED⊥CD交直线AC于点E.在点D由点A到点B运动过程中,设AD=x cm,AE=y cm.
(1)取指定点作图,根据下面表格预填结果,先通过作图确定AD=2 cm时,点E的位置,测量AE的长度.
①根据题意,在答题卡上补全图形;
②把表格补充完整:通过取点、画图、测量,得到了x与y的几组对应值,如表:
x/cm | … | 1 | 2 | 3 | … | ||||
y cm | … | 0.4 | 0.8 | 1.0 | m | 1.0 | 0 | 4.0 | … |
则m=______(结果保留一位小数).
(2)在下面的平面直角坐标系xOy中,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;
(3)结合画出的函数图象,解决问题:当AE=AD时,AD的长度约为______cm.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一辆轿车在经过某路口的感应线B和C处时,悬臂灯杆上的电子警察拍摄到两张照片,两感应线之间距离BC为6.2m,在感应线B、C两处测得电子警察A的仰角分别为∠ABD=45°,∠ACD=28°.求电子警察安装在悬臂灯杆上的高度AD的长.(结果精确到0.1米)(参考数据:sin28°=0.47,cos28°=0.88,tan28°=0.53)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com