精英家教网 > 初中数学 > 题目详情
如图为二次函数y=ax2+bx+c(a≠0)的图象,则下列说法:①a>0  ②2a+b=0 ③a+b+c>0 ④当﹣1<x<3时,y>0其中正确的个数为【   】
A.1B.2 C.3D.4
C。
由抛物线的开口方向判断a与0的关系,由x=1时的函数值判断a+b+c>0,然后根据对称轴推出2a+b与0的关系,根据图象判断﹣1<x<3时,y的符号:
①∵图象开口向下,∴a<0。说法错误。
②∵对称轴为x=,∴,即2a+b=0。说法正确。
③当x=1时,y>0,则a+b+c>0。说法正确。
④由图可知,当﹣1<x<3时,y>0。说法正确。
∴说法正确的有3个。故选C。 
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,已知二次函数的图象经过点A(3,3)、B(4,0)和原点O.P为二次函数图象上的一个动点,过点P作x轴的垂线,垂足为D(m,0),并与直线OA交于点C.

(1)求出二次函数的解析式;
(2)当点P在直线OA的上方时,用含m的代数式表示线段PC的长,并求线段PC的最大值;
(3)当m>0时,探索是否存在点P,使得△PCO为等腰三角形,如果存在,请直接写出所有P的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知直线与x轴和y轴分别交于点A和点B,抛物线的顶点M在直线AB上,且抛物线与直线AB的另一个交点为N.

(1)如图,当点M与点A重合时,求:
①抛物线的解析式;(4分)
②点N的坐标和线段MN的长;(4分)
(2)抛物线在直线AB上平移,是否存在点M,使得△OMN与△AOB相似?若存在,直接写出点M的坐标;若不存在,请说明理由.(4分)

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知二次函数()的图象如图所示,有下列结论:①;②;③;④.其中,正确结论的个数是
A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=ax2+bx+c过点A(0,2)、B(),且点B关于原点的对称点C也在该抛物线上.
⑴求a、b、c的值;
⑵①这条抛物线上纵坐标为的点共有         个;
②请写出: 函数值y随着x的增大而增大的x的一个范围          

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

一个直角三角形的两条直角边长的和为20㎝,其中一直角边长为x㎝,面积为y㎝2,则y与x的函数的关系式是( )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,四边形OABC是矩形,点B的坐标为(4,3).平行于对角线AC的直线m从原点O出发,沿x轴正方向以每秒1个单位长度的速度运动,设直线m与矩形OABC的两边分别交于点M、N,直线m运动的时间为t(秒).
(1)点A的坐标是:_________,点C的坐标是:__________;
(2)设△OMN的面积为S,求S与t的函数关系式;
(3)探求(2)中得到的函数S有没有最大值?若有,求出最大值;若没有,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,梯形ABCD中,BC∥AD,∠ABC=,对角线AC与BD相交于O,AB=8cm,AD=10cm,BC=6cm,一个动点E从点B出发,以每秒1cm的速度沿射线BA方向移动,过E作EQ⊥AB,交直线AC于P,交直线BD于Q,以PQ为边向上作正方形PQMN,设正方形PQMN与△BOC,重叠部分的面积为s,点E的运动时间为t秒.
(1)求PQ经过O 点时的运动时间t;
(2)求s与t的函数关系式,并求s的最大值;
(3)如图(2),若AB的中点为H,DK=1,过H作HT∥AD,交BD于T,交BK于G,求G在正方形PQMN内部时t的取值范围。
  

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

函数y=-的图象的两个分支分布在第_______象限.

查看答案和解析>>

同步练习册答案