【题目】已知抛物线()过,两点,将点B到该抛物线对称轴的距离记作,且满足,则实数的取值范围是__________.
【答案】或
【解析】
把A(4,4)代入抛物线y=ax2+bx+3得4a+b=,根据对称轴x=,B(2,m),且点B到抛物线对称轴的距离记为d,满足0<d≤1,所以0<|2()|≤1,解得a≥或a≤,把B(2,m)代入y=ax2+bx+3得:4a+2b+3=m,得到a=,所以≥或≤,即可解答.
把A(4,4)代入抛物线y=ax2+bx+3得:
16a+4b+3=4,
∴16a+4b=1,
∴4a+b=,
∵对称轴x=,B(2,m),且点B到抛物线对称轴的距离记为d,满足0<d≤1,
∴0<|2()|≤1,
∴0<≤1,
∴||≤1,
∴a≥或a≤,
把B(2,m)代入y=ax2+bx+3得:
4a+2b+3=m
2(2a+b)+3=m
2(2a+4a)+3=m
∴a=,
∴≥或≤,
∴m≤3或m≥4.
故答案为:m≤3或m≥4.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线y=-x+2分别交x轴、y轴于点A、B,抛物线y=﹣x2+bx+c经过点A、B.点P是x轴上一个动点,过点P作垂直于x轴的直线分别交抛物线和直线AB于点E和点F.设点P的横坐标为m.
(1)点A的坐标为 .
(2)求这条抛物线所对应的函数表达式.
(3)点P在线段OA上时,若以B、E、F为顶点的三角形与△FPA相似,求m的值.
(4)若E、F、P三个点中恰有一点是其它两点所连线段的中点(三点重合除外),称E、F、P三点为“共谐点”.直接写出E、F、P三点成为“共谐点”时m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ABC=90,D是AC的中点,⊙O经过A、B、D三点,CB的延长线交⊙O于点E.
(1)求证:AE=CE .
(2)若EF与⊙O相切于点E,交AC的延长线于点F,且CD=CF=2cm,求⊙O的直径.
(3)若EF与⊙O相切于点E,点C在线段FD上,且CF:CD=2:1,求sin∠CAB .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论:
①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④当x>﹣1时,y的值随x值的增大而增大.其中正确的结论有 (填序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点O为平面直角坐标系的原点,点A在x轴上,△OAB是边长为4的等边三角形,以O为旋转中心,将△OAB按顺时针方向旋转60°,得到△OA′B′,那么点A′的坐标为( )
A. (2,2) B. (﹣2,4) C. (﹣2,2) D. (﹣2,2)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2+bx+c的图象经过点(0,﹣2),与x轴交点的横坐标分别为x1、x2,且﹣1<x1<0,1<x2<2,下列结论正确的是( )
A.a<0B.5a+b+2c>0C.2a+b<0D.4ac+8a>b2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,射线交一圆于点,,射线交该圆于点,,且 .
(1)判断与的数量关系.(不必证明)
(2)利用尺规作图,分别作线段的垂直平分线与的平分线,两线交于点(保留作图痕迹,不写作法),求证:平分.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】综合与探究
如图,已知抛物线与轴交于,两点,与轴交于点,对称轴为直线,顶点为.
(1)求抛物线的解析式及点坐标;
(2)在直线上是否存在一点,使点到点的距离与到点的距离之和最小?若存在,求出点的坐标;若不存在,请说明理由.
(3)在轴上取一动点,,过点作轴的垂线,分别交抛物线,,于点,,.
①判断线段与的数量关系,并说明理由
②连接,,,当为何值时,四边形的面积最大?最大值为多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com