精英家教网 > 初中数学 > 题目详情
如图,正方形ABCD的边长为1,AB、AD上各有一点P、Q,△APQ的周长为2,求∠PCQ.
为了解决这个问题,我们在正方形外以BC和AB延长线为边作△CBE,使得△CBE≌△CDQ(如精英家教网图)
(1)△CBE可以看成由△CDQ怎样运动变化得到的?
(2)图中PQ与PE的长度有什么关系?为什么?
(3)请用(2)的结论证明△PCQ≌△PCE;
(4)根据以上三个问题的启发,求∠PCQ的度数.
(5)对于题目中的点Q,若Q恰好是AD的中点,求BP的长.
分析:(1)△CBE可以看成是由△CDQ旋转得到的;
(2)由旋转可知△CEB≌△CDQ,根据全等三角形的对应边相等得到DQ=BE,由正方形的变成为1易知AQ=1-DQ=1-BE,AP=1-BP,又有△APQ的周长为2,可求出PQ=PE;
(3)由(2)得到的PQ=PE,由△CEB≌△CDQ得到一对对应边相等,再由CP为公共边,根据SSS判定△PCQ≌△PCE;
(4)利用△PCQ≌△PCE得出∠PCQ=∠PCE,又有∠BCE=∠QCD,得出∠PCQ的度数是∠DCB度数的一半,由∠DCB为直角即可求出∠PCQ的度数;
(5)由Q为AD的中点,根据正方形的边长为1,求出DQ与AQ的长,又△CEB≌△CDQ,得到BE=DQ,从而求出BE的长,再由△PCQ≌△PCE得到PE=PQ,设PB为x,用PB+BE表示出PE即为PQ的长,且表示出AP的长,在直角三角形APQ中,根据勾股定理列出关于x的方程,求出方程的解得到x的值,即为BP的长.
解答:解:(1)△CBE可以看成是由△CDQ沿逆时针旋转90°得到的;

(2)∵△CBE≌△CDQ,正方形的边长为1,
∴AQ=1-DQ=1-BE,AP=1-BP,
又∵AP+AQ+PQ=2,
∴1-BE+1-BP+PQ=2,即2-PE+PQ=2,
∴PE=PQ;

(3)∵△CBE≌△CDQ,
∴QC=EC,
在△PCQ和△PCE中,
PQ=PE
CP=CP
QC=EC

∴△PCQ≌△PCE(SSS);

(4)∵△PCQ≌△PCE,
∴∠PCQ=∠PCE,
又∵∠BCE=∠QCD,
∴∠QCD+∠PCB=∠PCQ,
又∵∠DCB=90°,
∴∠PCQ=
1
2
×90°=45°;

(5)若Q为AD中点,得到DQ=AQ=
1
2
AD=
1
2

∵△CBE≌△CDQ,∴BE=DQ=
1
2

设BP=x,则AP=1-x,
∵△PCQ≌△PCE,∴QP=PE=PB+BE=x+
1
2

在Rt△APQ中,根据勾股定理得:PQ2=AQ2+AP2
即(x+
1
2
2=(
1
2
2+(1-x)2
化简得:x2+x+
1
4
=
1
4
+1-2x+x2,即3x=1,解得x=
1
3

则BP的长为
1
3
点评:本题考查了图形的旋转、全等三角形的判定与性质、正方形的性质等知识.要求学生掌握图形的三种变换:平移、旋转、轴对称都只是改变图形的位置,不改变形状和大小,从而由旋转得到△CBE≌△CDQ,是本题的突破点,第四问利用转化的思想来求解,第五问在求BP长时,利用勾股定理列出方程,利用方程的思想来求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

19、如图:正方形ABCD,M是线段BC上一点,且不与B、C重合,AE⊥DM于E,CF⊥DM于F.求证:AE2+CF2=AD2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD中,E点在BC上,AE平分∠BAC.若BE=
2
cm,则△AEC面积为
 
cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正确结论的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:初中数学 来源: 题型:

17、如图,正方形ABCD的边长为4,将一个足够大的直角三角板的直角顶点放于点A处,该三角板的两条直角边与CD交于点F,与CB延长线交于点E,四边形AECF的面积是
16

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接BE、DG.
(1)若ED:DC=1:2,EF=12,试求DG的长.
(2)观察猜想BE与DG之间的关系,并证明你的结论.

查看答案和解析>>

同步练习册答案