精英家教网 > 初中数学 > 题目详情
溱湖湿地风景区特色旅游项目:水上游艇. 旅游人员消费后风景区可盈利10元/人,每天消费人员为500人. 为增加盈利,准备提高票价,经调查发现,在其他条件不变的情况下,票价每涨1元,消费人员就减少 20人.
(1)现该项目要保证每天盈利6000元,同时又要旅游者得到实惠,那么票价应涨价多少元?
(2)若单纯从经济角度看,票价涨价多少元,能使该项目获利最多?
(1)5元;(2)7.5元

试题分析:(1)设每位消费单价应涨价x元,根据“票价每涨1元,消费人员就减少 20人”即可列方程求解;
(2)设每位消费金额涨价m元,能获利w元,根据“票价每涨1元,消费人员就减少 20人”即可列出w关于m的二次函数,再根据二次函数的性质求解即可.
(1)设每位消费单价应涨价x元,根据题意得
(10+x)(500-20x)=6000
解得
∵该项目要保证每天盈利6000元,同时又要旅游者得到实惠,
∴x=5   
答:每位消费单价应涨价5元;
(2)设每位消费金额涨价m元,能获利w元,根据题意得:
W=(10+m)(500-20m)=-20m2+300m+5000
∵a=-200<0,
∴m==7.5元时,获利最多
答:单纯从经济角度看,每位消费金额涨价7.5元,能使该项目获利最多.
点评:此类问题综合性强,难度较大,在中考中比较常见,一般作为压轴题,题目比较典型.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=-x2+mx+n与x轴分别交于点A(4,0),B(-2,0),与y轴交于点C.

(1)求该抛物线的解析式;                                 
(2)M为第一象限内抛物线上一动点,点M在何处时,△ACM的面积最大;
(3)在抛物线的对称轴上是否存在这样的点P,使得△PAC为直角三角形?若存在,请求出所有可能点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,等腰直角的斜边轴上,顶点的坐标为为斜边上的高.抛物线与直线交于点,点的横坐标为.点轴的正半轴上,过点轴.交射线于点.设点的横坐标为,以为顶点的四边形的面积为

(1)求所在直线的解析式;
(2)求的值;
(3)当时,求的函数关系式;
(4)如图,设直线交射线于点,交抛物线于点.以为一边,在的右侧作矩形,其中.直接写出矩形重叠部分为轴对称图形时的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

小明家今年种植的“红灯”樱桃喜获丰收,采摘上市20天全部销售完,小明对销售情况进行跟踪记录,并将记录情况绘成图象,日销售量y(单位:千克)与上市时间x(单位:天,x为整数)的函数关系如图1所示,樱桃价格z(单位:元/千克)与上市时间x(单位:天,x为整数)的函数关系如图2所示.

(1)求小明家樱桃的日销售量y与上市时间x的函数解析式;
(2)上市后的第12天至第15天这4天中,哪天的销售金额最多?是多少?
(3)上市后的前15天中,销售金额最多的是哪一天?为什么?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线与直线AB交于点A(-1,0),B(4,).点D是抛物线A,B两点间部分上的一个动点(不与点A,B重合),直线CD与y轴平行,交直线AB于点C,连接AD,BD.

(1)求抛物线的解析式;
(2)设点D的横坐标为m,则用m的代数式表示线段DC的长;
(3)在(2)的条件下,若△ADB的面积为S,求S关于m的函数关系式,并求出当S取最大值时的点C的坐标;
(4)当点D为抛物线的顶点时,若点P是抛物线上的动点,点Q是直线AB上的动点,判断有几个位置能使以点P,Q,C,D为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,等边△ABC的边长为3cm,动点P从点A出发,以每秒1cm的速度,沿A→B→C的方向运动,到达点C时停止,设运动时间为x(s),y=PC2,则y关于x的函数的图像大致为  【 】

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,平面直角坐标系xOy中, Rt△AOB的直角边OA在x轴的正半轴上,点B在第一象限,并且AB=3,OA=6,将△AOB绕点O逆时针旋转90度得到△COD.点P从点C出发(不含点C),沿射线DC方向运动,记过点D,P,B的抛物线的解析式为y=ax2+bx+c(a<0).

(1)直接写出点D的坐标;
(2)在直线CD的上方是否存在一点Q,使得点D,O,P,Q四点构成的四边形是菱形,若存在,求出P与Q的坐标;
(3)当点P运动到∠DOP=45度时,求抛物线的对称轴;
(4)求代数式a+b+c的值的取值范围(直接写出答案即可).

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

将下列函数图像沿y轴向上平移a(a>0)个单位长度后,不经过原点的有    (填写正确的序号).
① y=;②y=3x-3;③y=x2+3x+3;④y=-(x-3)2+3.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

二次函数的部分图象如图所示,由图象可知该二次函数的图象的对称轴是直线x       

查看答案和解析>>

同步练习册答案