1£®Èçͼ£¨1£©£¬¾ØÐÎABCDµÄ±ßAB=4£¬BC=8£¬½«Rt¡÷ABCÈƵãBÄæʱÕëÐýת90¡ãµÃµ½Rt¡÷GEF£¬µãEÓëBÖغϣ¬½«¡÷GEF´ÓBÒÔÿÃë1¸öµ¥Î»µÄËÙ¶ÈÏòÉäÏßBC·½ÏòÔÈËÙÒƶ¯£¬µ±µãGÓëµãCÖغÏʱֹͣÔ˶¯£¬ÉèÔ˶¯Ê±¼äΪtÃ룬½â´ðÏÂÁÐÎÊÌ⣺
£¨1£©ÔÚÔ˶¯¹ý³ÌÖУ¬µ±tΪºÎֵʱ£¬GF¹ýµãA£»
£¨2£©ÔÚÕû¸öÔ˶¯¹ý³ÌÖУ¬Éè¡÷GEFÓë¡÷ACDÖصþ²¿·ÖµÄÃæ»ýΪS£¬ÇóSÓëtµÄº¯Êý¹Øϵʽ£¬²¢Ð´³öÏàÓ¦µÄtµÄÈ¡Öµ·¶Î§£»
£¨3£©Èçͼ£¨2£©ÔÚÔ˶¯¹ý³ÌÖе±0¡Üt¡Ü8ʱ£¬Á¬½ÓBD½»ACÓëO£¬ÉèEFÓëÏ߶ÎBD½»ÓÚµãP£¬ÊÇ·ñ´æÔÚ¡÷PEOΪµÈÑüÈý½ÇÐΣ¿Èô´æÔÚ£¬Çó³öÏàÓ¦µÄt£¬Èô²»´æÔÚ˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©Èçͼ1£¬ÓÉÐýתºÍƽÒƵÄÐÔÖÊ¿ÉÖªBF=BC=E¡äF¡ä£¬Ò×µÃF¡äM=ME¡ä=4£¬¿ÉµÃAMΪ¡÷G¡äE¡äF¡äµÄÖÐλÏߣ¬ÓÉÖÐλÏßµÄÐÔÖʿɵÃAMµÄ³¤£¬Ò×µÃt£»
£¨2£©ÀûÓ÷ÖÀàÌÖÂÛµÄ˼Ï룬¢Ùµ±0¡Üt¡Ü2ʱ£¬Èçͼ1£¬AM=t£¬MP=$\frac{1}{2}t$£¬¿ÉµÃS=$\frac{1}{4}$t2£»
¢ÚÈçͼ2£¬µ±2£¼t¡Ü8ʱ£¬AN=t-2£¬NQ=$\frac{\sqrt{5}}{5}$£¨t-2£©£¬ÀûÓÃÏàËÆÈý½ÇÐεÄÐÔÖʿɵÃAN=t-2£¬NQ=$\frac{\sqrt{5}}{5}$£¨t-2£©£¬ÓÉS=S¡÷MPA-S¡÷AQN ¿ÉµÃ½á¹û£»
¢Ûµ±8£¼t¡Ü10ʱ£¬ÀûÓÃS=S¡÷ADC-S¡÷ANQ£¬Çó³ö´ð°¸£»
¢Üµ±10£¼t¡Ü12ʱ£¬¿ÉµÃ£ºCG=12-t£¬CM=24-2t£¬QC=$\frac{\sqrt{5}}{5}$£¨24-2t£©£¬QM=$\frac{2\sqrt{5}}{5}$£¨24-2t£©£¬ÔÙÀûÓÃS=$\frac{1}{2}$QM•QCÇó³ö´ð°¸£»
£¨3£©Ê×Ïȱíʾ³öPE2=£¨$\frac{1}{2}$t£©2£¬QE2=22+£¨4-t£©2£¬OP2=${£¨2\sqrt{5}-\frac{\sqrt{5}}{2}t£©}^{2}$£¬ÔÙ·Ö±ðÀûÓâٵ±PO=PEʱ£¬¢Úµ±EO=EPʱ£¬¢Ûµ±OE=OPʱ£¬Çó³ö´ð°¸£®

½â´ð ½â£º£¨1£©¡ßF¡äM=ME¡ä=4£¬
¡àt=AM=$\frac{1}{2}G¡äE¡ä=2$£¬
¼´µ±t=2ʱ£¬GF¹ýµã£»

£¨2£©¢ÙÈçͼ1£¬µ±0¡Üt¡Ü2ʱ£¬AM=t£¬MP=$\frac{1}{2}t$£¬S=$\frac{1}{4}$t2£¬
¢ÚÈçͼ2£¬µ±2£¼t¡Ü8ʱ£¬AN=t-2£¬
¡ß¡÷ANQ¡×¡÷ACD£¬
¡à$\frac{NQ}{AN}$=$\frac{CD}{AC}$£¬
¡à$\frac{NQ}{t-2}$=$\frac{4}{4\sqrt{5}}$£¬
¡àNQ=$\frac{\sqrt{5}}{5}$£¨t-2£©£¬
AQ=$\frac{2\sqrt{5}}{5}£¨t-2£©$£¬
¡àS=S¡÷MPA-S¡÷AQN=$\frac{1}{4}$t2-$\frac{1}{2}$¡Á$\frac{2\sqrt{5}}{5}$¡Á$\frac{\sqrt{5}}{5}$£¨t-2£©2
=$\frac{1}{4}$t2-$\frac{1}{5}$£¨t-2£©2
=$\frac{1}{20}$t2+$\frac{4}{5}$t$-\frac{4}{5}$£»
¢ÛÈçͼ3£¬µ±8£¼t¡Ü10ʱ£¬
S=S¡÷ADC-S¡÷ANQ
=16-$\frac{1}{5}$£¨t-2£©2
=-$\frac{1}{5}$t2+$\frac{4}{5}$t-$\frac{4}{5}$+16
=$-\frac{1}{5}$t2+$\frac{4}{5}t$$+\frac{76}{5}$£»
¢Üµ±10£¼t¡Ü12ʱ£¬
¿ÉµÃ£ºCG=12-t£¬CM=24-2t£¬QC=$\frac{\sqrt{5}}{5}$£¨24-2t£©
QM=$\frac{2\sqrt{5}}{5}$£¨24-2t£©
¡àS=$\frac{1}{2}$QM•QC
=$\frac{1}{2}¡Á\frac{2\sqrt{5}}{5}$¡Á$\frac{\sqrt{5}}{5}$£¨24-2t£©2
=$\frac{1}{5}$£¨24-2t£©2
=-$\frac{4}{5}$t2-$\frac{96}{5}$t+$\frac{576}{5}$£¬
×ÛÉÏ£¬ÓÐS=$\left\{\begin{array}{l}{\frac{1}{4}{t}^{2}£¨0¡Üt¡Ü2£©}\\{\frac{1}{20}{t}^{2}+\frac{4}{5}t-\frac{4}{5}£¨2£¼t¡Ü8£©}\\{-\frac{1}{5}{t}^{2}+\frac{4}{5}t+\frac{76}{5}£¨8£¼t¡Ü10£©}\\{\frac{4}{5}{t}^{2}-\frac{96}{5}t+\frac{576}{5}£¨10£¼t¡Ü12£©}\end{array}\right.$£»

£¨3£©Èçͼ5£¬PE2=£¨$\frac{1}{2}$t£©2=$\frac{1}{4}$t2£¬OE2=22+£¨4-t£©2=4+16-8t+t2£¬
OP2=${£¨2\sqrt{5}-\frac{\sqrt{5}}{2}t£©}^{2}$=20-10t+$\frac{5}{4}$t2£¬
¢Ùµ±PO=PEʱ£¬
$\frac{1}{4}{t}^{2}$=20-10t+$\frac{5}{4}$t2
½âµÃ£ºt=5$¡À\sqrt{5}$£»
¢Úµ±EO=EPʱ£¬
t2-8t+20=$\frac{1}{4}$t2£¬
½âµÃ£ºt1=4£¬t2=$\frac{20}{3}$£»
¢Ûµ±OE=OPʱ£¬
t2-8t+20=20-10t+$\frac{5}{4}$t2£¬
½âµÃ£ºt3=0£¬t4=8£»
µ±t=0ʱ£¬P£¬EÖغϠ  µ±t=4ʱ£¬O£¬PÖغϣ¬
×ÛÉÏËùÊö£ºtµÄֵΪ5+$\sqrt{5}$£¬5-$\sqrt{5}$£¬$\frac{20}{3}$£¬8£®

µãÆÀ ´ËÌâÖ÷Òª¿¼²éÁËËıßÐÎ×ÛºÏÒÔ¼°¹´¹É¶¨ÀíºÍÏàËÆÈý½ÇÐεÄÅж¨ÓëÐÔÖÊ¡¢µÈÑüÈý½ÇÐεÄÐÔÖʵÈ֪ʶ£¬ÕýÈ·ÀûÓ÷ÖÀàÌÖÂ۵óötµÄÖµÒÔ¼°½áºÏ·Ö¶Îº¯ÊýÇó³öº¯Êý¹ØϵʽÊǽâÌâ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®²»µÈʽ×é$\left\{\begin{array}{l}3x+2£¾5\\ x¡Ü2\end{array}\right.$µÄ½âÔÚÊýÖáÉϱíʾΪ£¨¡¡¡¡£©
A£®B£®C£®D£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®${£¨{\frac{1}{3}}£©^{-1}}+£¨2016-¦Ð{£©^0}$=4£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®Ä³ÖÖÁ÷¸Ð²¡¶¾µÄÖ±¾¶ÊÇ0.0000085cm£¬Õâ¸öÊý¾ÝÓÿÆѧ¼ÇÊý·¨±íʾΪ8.5¡Á10-6cm£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÔÚÒ»¸ö²»Í¸Ã÷µÄ²¼´üÖÐ×°ÓÐÈô¸É¸öÖ»ÓÐÑÕÉ«²»Í¬µÄСÇò£¬Èç¹û´üÖÐÓкìÇò5¸ö£¬»ÆÇò4¸ö£¬ÆäÓàΪ°×Çò£¬´Ó´ü×ÓÖÐËæ»úÃþ³öÒ»¸öÇò£¬¡°Ãþ³ö»ÆÇò¡±µÄ¸ÅÂÊΪ$\frac{1}{3}$£¬Ôò´üÖа×ÇòµÄ¸öÊýΪ£¨¡¡¡¡£©
A£®2B£®3C£®4D£®12

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®¼ÆËã-6a3b2¡Â2a2bµÄ½á¹ûÊÇ£¨¡¡¡¡£©
A£®-3ab2B£®-3abC£®3abD£®3ab2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®½â·½³Ì£¨×飩
£¨1£©$\frac{2y-1}{3}$=$\frac{y+2}{4}$-1                  
£¨2£©$\left\{\begin{array}{l}{9s-13t+2=0}\\{s=2-3t}\end{array}\right.$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®½«ÏÂÁи÷ÊýÔÚÊýÖáÉϱíʾ³öÀ´£¬²¢½«ËüÃÇÓá°£¾¡±Á¬½ÓÆðÀ´
1£¬-|-3|£¬$-1\frac{1}{2}$£¬0£¬2.5£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÒÑÖª$\frac{1}{m-2}=1$£¬Ôò$\frac{2}{m-2}-m+2$µÄÖµÊÇ£¨¡¡¡¡£©
A£®1B£®2C£®3D£®4

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸