【题目】对非负实数x“四舍五入”到个位的值记为<x>,即当n为非负整数时,若,则<x>=n,如<0.46>=0,<3.67>=4。给出下列关于<x>的结论:
①<1.493>=1;
②<2x>=2<x>;
③若,则实数x的取值范围是;
④当x≥0,m为非负整数时,有;
⑤。
其中,正确的结论有 (填写所有正确的序号)。
【答案】①③④。
【解析】
①根据定义,∵,∴<1.493>=1。结论正确。
②用特例反证:∵<1.3>=1,<2×1.3>=<2.6>=3,∴<2×1.3>≠2<1.3>。
∴<2x>=2<x>不一定成立。结论错误。
③若,则。
∴实数x的取值范围是。结论正确。
④设2013x=k+b,k为2013x的整数部分,b为其小数部分,
1)当0≤b<时,<2013x>=k,
m+2013x=(m+k)+b,m+k为m+2013x的整数部分,b为其小数部分,< m+2013x>=m+k,
∴< m+2013x >=m+<2013x>。
2)当b≥时,<2013x>=k+1,
则m+2013x=(m+k)+b,m+k为m+2013x的整数部分,b为其小数部分,< m+2013x >=m+k+1,
∴< m+2013x >=m+<2013x>
综上:当x≥0,m为非负整数时,< m+2013x >=m+<2013x>成立。结论正确。
⑤用特例反证::<0.6>+<0.7>=1+1=2,而<0.6+0.7>=<1.3>=1,
∴<0.6>+<0.7>≠<0.6+0.7>。∴不一定成立。结论错误。
综上所述,正确的结论有①③④。
科目:初中数学 来源: 题型:
【题目】如图,正方形MNPQ网格中,每个小方格的边长都相等,正方形ABCD的顶点在正方形MNPQ的小方格顶点上.
(1)设正方形MNPQ网格内的每个小方格的边长为1,求:
①△ABQ,△BCM,△CDN,△ADP的面积;
②正方形ABCD的面积;
(2)设MB=a,BQ=b,利用这个图形中的直角三角形和正方形的面积关系,你能验证勾股定理吗?相信你能给出简明的推理过程.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法中,不正确的是( )
A. 平方等于本身的数只有和 B. 正数的绝对值是它本身,负数的绝对值是它的相反数
C. 两个数的差为正数,至少其中有一个正数 D. 两个负数,绝对值大的负数反而小
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商店在节日期间开展优惠促销活动:购买原价超过200元的商品,超过200元的部分可以享受打折优惠.若购买商品的实际付款金额y(单位:元)与商品原价x(单位:元)的函数关系的图象如图所示,则超过200元的部分可以享受的优惠是( )
A.打八折
B.打七折
C.打六折
D.打五折
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】声音在空气中的传播速度v(m/s)与温度T(℃)的关系如下表:
温度/℃ | 0 | 5 | 10 | 15 | 20 |
速度v/(m/s) | 331 | 334 | 337 | 340 | 343 |
(1)写出速度v与温度T之间的关系式;
(2)当T=30℃时,求声音的传播速度;
(3)当声音的传播速度为346m/s时,温度是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB∥CD,∠BAC与∠DCA的平分线相交于点G,GE⊥AC于点E,F为AC上的一点,且FA=FG=FC,GH⊥CD于H.下列说法:①AG⊥CG;②∠BAG=∠CGE;③S△AFG=S△CFG;④若∠EGH︰∠ECH=2︰7,则∠EGF=50°.其中正确的有( )
A. ①②③④ B. ②③④ C. ①③④ D. ①②④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将下列证明过程补充完整:
已知:如图,点B.E分别在AC、DF上,AF分别交BD、CE于点M、N,∠1=∠2,∠A=∠F.
求证:∠C=∠D.
证明:因为∠1=∠2(已知).
又因为∠1=∠ANC(______),
所以______(等量代换).
所以______∥______(同位角相等,两直线平行).
所以∠ABD=∠C(______).
又因为∠A=∠F(已知),
所以______∥______(______).
所以______(两直线平行,内错角相等).
所以∠C=∠D(______).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将一副直角三角板(含45°角的直角三角板ABC及含30°角的直角三角板DCB)按图示方式叠放,斜边交点为O,则△AOB与△COD的面积之比等于 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题情景:如图1,AB∥CD,∠PAB=140°,∠PCD=135°,求∠APC的度数.
(1)丽丽同学看过图形后立即口答出:∠APC=85°,请你补全她的推理依据.
如图2,过点P作PE∥AB,
∵AB∥CD,∴PE∥CD. ( )
∴∠A+∠APE=180°.
∠C+∠CPE=180°. ( )
∵∠PAB=140°,∠PCD=135°,
∴∠APE=40°,∠CPE=45°
∴∠APC=∠APE+∠CPE=85°.( )
问题迁移:
(2)如图3,AD∥BC,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP=∠β,求∠CPD与∠α、∠β之间有何数量关系?请说明理由.
(3)在(2)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∠CPD与∠α、∠β之间的数量关系.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com