精英家教网 > 初中数学 > 题目详情
如图,已知直径为OA的⊙P与x轴交于O、A两点,点B、C把三等分,连接PC并延长PC交y轴于点D(0,3).
求证:(1)△POD≌△ABO;
(2)若直线l:y=kx+b经过圆心P和D,求直线l的解析式
(1)证明见解析(2)y=x+3
(1)证明:连接PB,
∵直径为OA的⊙P与x轴交于O、A两点,点B、C把三等分,
∴∠APB=∠DPO=×180°=60°,∠ABO=∠POD=90°。
∵PA=PB,∴△PAB是等边三角形。
∴AB=PA,∠BAO=60°,
∴AB=OP,∠BAO=∠OPD。
在△POD和△ABO中,
∵∠OPD=∠BAO, OP="BA" ,∠POD=∠ABO , 
∴△POD≌△ABO(ASA)。
(2)解:由(1)得△POD≌△ABO,∴∠PDO=∠AOB。
∵∠AOB=∠APB=×60°=30°,∴∠PDO=30°。
∴OP=OD•tan30°=3×。∴点P的坐标为:(-,0)。
∵点P,D在直线y=kx+b上,
 ,解得: 。
∴直线l的解析式为:y=x+3。
(1)首先连接PB,由直径为OA的⊙P与x轴交于O、A两点,点B、C把三等分,可求得∠APB=∠DPO=60°,∠ABO=∠POD=90°,即可得△PAB是等边三角形,可得AB=OP,然后由ASA,即可判定:△POD≌△ABO。
(2)易求得∠PDO=30°,由OP=OD•tan30°,即可求得点P的坐标,然后利用待定系数法,即可求得直线l的解析式。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:计算题

计算: 

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

sin60°的相反数是【   】
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,在△ABC中,CD⊥AB,sinA=,AB=13,CD=12,求AD的长和tanB的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:计算题

计算:

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如果∠A为锐角,且sinA=0.6,那么(  )
A.0°<A<30°                B.30°<A<45°
C.45°<A<60°              D.60°<A<90°

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在一个阳光明媚、清风徐来的周末,小明和小强一起到郊外放风筝﹒他们把风筝放飞后,将两个风筝的引线一端都固定在地面上的C处(如图).现已知风筝A的引线(线段AC)长20m,风筝B的引线(线段BC)长24m,在C处测得风筝A的仰角为60°,风筝B的仰角为45°.
(1)试通过计算,比较风筝A与风筝B谁离地面更高?
(2)求风筝A与风筝B的水平距离.(精确到0.01 m;参考数据:sin45°≈0.707,cos45°≈0.707,tan45°=1,sin60°≈0.866,cos60°=0.5,tan60°≈1.732)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

黄岩岛是我国南海上的一个岛屿,其平面图如图甲所示,小明据此构造出该岛的一个数学模型如图乙所示,其中∠A=∠D=90°,AB=BC=15千米,CD=千米,请据此解答如下问题:

(1)求该岛的周长和面积;(结果保留整数,参考数据
(2)求∠ACD的余弦值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

在“测量旗杆的高度”的数学课题学习中,某学习小组测得太阳光线与水平面的夹角为27°,此时旗杆在水平地面上的影子的长度为24米,则旗杆的高度约为【   】
A.24米B.20米C.16米D.12米

查看答案和解析>>

同步练习册答案