【题目】平面直角坐标系中,是等边三角形,点,点,点是边上的一个动点(与点、不重合).直线是经过点的一条直线,把沿直线折叠,点的对应点是点.
(1)如图①,当时,若直线,求点的坐标;
(2)如图②,当点在边上运动时,若直线,求的面积;
(3)当时,在直线变化过程中,求面积的最大值(直接写出结果即可).
【答案】(1);(2);(3)
【解析】
(1)设直线交于点,连接交于,再证明是等边三角形;然后再根据,、关于对称,得到,;利用解直角三角形可以求得OD的长;过点作于点,在中,解直角三角形可得OF和的长即可解答;
(2)连接,根据对称的性质和直线可得,最后根据解答即可;
(3)作O’P⊥AB时,垂足为E,然后解三角形和线段的和差求得O’E,最后在运用三角形的面积公式求解即可.
解:(1)设直线交于点,连接交于,
∵,
∴,,
∴是等边三角形,
∵,,关于对称,
∴,
∵,
∴,
过点作于点,在中,可得,
,
∴点的坐标为
(2)连接,
∵,关于直线对称,
∴直线,
∵直线,
∴,
∴.
(3)当O’P⊥AB时,垂足为E,的面积最大
如图:作O’P⊥AB时,垂足为E
在Rt△BPE中,PA=2.∠B=60°
∴PE=PA·sin60°=
∴O’E=6+.
∴面积的最大值:.
科目:初中数学 来源: 题型:
【题目】为了解游客对某景区的满意度,特对游客采取随机抽样的方式进行问卷调查,调查的结果分为A,B,C,D四类,其含意依次表示为“非常满意”、“比较满意”、“基本满意”和“不太满意”,划分类别后的数据整理如表1(不完整).
(1)求表中的数据a和b.
(2)如果根据表中频数画扇形统计图,那么类别为B的频数所对应的扇形圆心角是几度?
(3)已知该景区每日游客限流3000名,估计一天的游客中类别C的游客人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:点M是平行四边形ABCD对角线AC所在直线上的一个动点(点M不与点A、C重合),分别过点A、C向直线BM作垂线,垂足分别为点E、F,点O为AC的中点.
⑴如图1,当点M与点O重合时,OE与OF的数量关系是 .
⑵直线BM绕点B逆时针方向旋转,且∠OFE=30°.
①如图2,当点M在线段AC上时,猜想线段CF、AE、OE之间有怎样的数量关系?请你写出来并加以证明;
②如图3,当点M在线段AC的延长线上时,请直接写出线段CF、AE、OE之间的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,,将绕点顺时针旋转,使点落在点处,得到,过点作平行于轴的直线交于点,交轴于点,直线交于点.,.
(1)求经过点、的反比例函数和直线:的解析式;
(2)过点作轴,求五边形的面积;
(3)直接写出当时的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形的边长是9,点是边上的一个动点,点是边上一点,,连接,把正方形沿折叠,使点,分别落在点,处,当点落在线段上时,线段的长为__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD中,点E为BC边上的一点,连接AE,过点D作DM⊥AE,垂足为点M,交AB于点F.将△AMF沿AB翻折得到△ANF.延长DM,AN交于点P. 给出以下结论①;②;③;④若,则;.其中正确的是( )
A.①②③④B.①②③C.①②④D.③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线与轴负半轴交于点,与轴正半轴交于点,与轴负半轴交于点,,,.
(1)求点的坐标和抛物线的函数关系式;
(2)点是上一点(不与点、重合),过点作轴的垂线,交抛物线于点,交于点,当时,求点的坐标;
(3)设抛物线的对称轴交轴于点,在(2)的条件下,点是抛物线对称轴上一点,点是坐标平面内一点,是否存在点、,使以、、、为顶点的四边形是菱形?若存在,请求出点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小元步行从家去火车站,走到 6 分钟时,以同样的速度回家取物品,然后从家乘出租车赶往火车站,结果比预计步行时间提前了3 分钟.小元离家路程S(米)与时间t(分钟)之间的函数图象如图,从家到火车站路程是( )
A.1300 米B.1400 米C.1600 米D.1500 米
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com