精英家教网 > 初中数学 > 题目详情
如图,在第二象限内作射线OC,与x轴的夹角为60°,在射线OC上取一点A,过点A作AH⊥x轴于点H,在抛物线y=x2(x<0)上取一点P,在y轴上取一点Q,使得以P、O、Q为顶点的三角形与△AOH全等,则符合条件的点A的坐标是______.
①当∠POQ=∠OAH=30°,若以P,O,Q为顶点的三角形与△AOH全等,那么A、P重合;
由于∠AOH=60°,
所以直线y=-
3
x,联立抛物线的解析式,
得:
y=-
3
x
y=x2

解得
x=0
y=0
x=-
3
y=3

故A(-
3
,3);
②当∠POQ=∠AOH=60°,此时△POQ≌△AOH;
易知∠POH=30°,则直线y=-
3
3
x,联立抛物线的解析式,
得:
y=-
3
3
x
y=x2

解得
x=0
y=0
或;
x=-
3
3
y=
1
3

故P(-
3
3
1
3
),那么A(-
1
3
3
3
);
③当∠OPQ=90°,∠POQ=∠AOH=60°时,此时△QOP≌△AOH;
易知∠POH=30°,则直线y=-
3
3
x,联立抛物线的解析式,
得:
y=-
3
3
x
y=x2

解得
x=0
y=0
x=-
3
3
y=
1
3

故P(-
3
3
1
3
),
∴OP=
2
3
,QP=
2
3
3

∴OH=OP=
2
3
,AH=QP=
2
3
3

故A(-
2
3
2
3
3
);
④当∠OPQ=90°,∠POQ=∠OAH=30°,此时△OQP≌△AOH;
此时直线y=-
3
x,联立抛物线的解析式,
得:
y=-
3
x
y=x2

解得
x=0
y=0
x=-
3
y=3

∴P(-
3
,3);
∴QP=2,OP=2
3

∴OH=QP=2,AH=OP=2
3

故A(-2,2
3
).
综上可知:符合条件的点A有四个,则符合条件的点A的坐标是(-
3
,3);或(-
1
3
3
3
)或(-
2
3
2
3
3
)或(-2,2
3
).
故答案为:(-
3
,3);或(-
1
3
3
3
)或(-
2
3
2
3
3
)或(-2,2
<
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,已知直线y=-
1
2
x+1交坐标轴于A、B两点,以线段AB为边向上作正方形ABCD,过A、D、C作抛物线L1
(1)请直接写出点C、D的坐标;
(2)求抛物线L1的解析式;
(3)若正方形以每秒
5
个长度单位的速度沿射线AB下滑,直至顶点D落在x轴上时停止.设正方形在运动过程中落在x轴下方部分的面积为S.求S关于滑行时间t的函数关系式;
(4)在(3)的条件下,抛物线L1与正方形一起平移,同时停止,得到抛物线L2.两抛物线的顶点分别为M、N,点P是x轴上一动点,点Q是抛物线L1上一动点,是否存在这样的点P、Q,使得以M、N、P、Q为顶点的四边形为平行四边形?若存在,直接写出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线l经过A(-2,0)和B(0,2)两点,它与抛物线y=ax2在第二象限内相交于点P,且△AOP的面积为1,求a的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,抛物线y=ax2+bx+c(a≠O)经过X轴上的两点A(x1,0)、B(x2,0)和y轴上的点C(0,-
3
2
),⊙P的圆心P在y轴上,且经过B、C两点,若b=
3
a,AB=2
3

(1)求抛物线的解析式;
(2)设D在抛物线上,且C,D两点关于抛物线的对称轴对称,问直线BD是否经过圆心P,并说明理由;
(3)设直线BD交⊙P于另一点E,求经过E点的⊙P的切线的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

天羽服装厂生产M、N型两种服装,受资金及规模限制,每天最多只能用A种面料68米和B种面料62米生产M、N型两种服装共80套.已知M、N型服装每套所需面料和成本如下表,设每天生产M型服装x套.
AB成本
M型1.1m0.4m100元
N型0.6m0.9m80元
(1)若要每天成本不高于7200元,则该厂每天生产M型服装最多多少套,最少多少套?
(2)经市场调查,生产的M、N型服装有两种销售方案(假设每天生产的服装都能全部售出).
方案Ⅰ:两种型号服装都在本市销售,M型180元/件、N型120元/件;
方案Ⅱ:N型服装在本市销售,120元/件,M型服装批发给H市服装商,其每件的批发价y(元)与批量x(件)之间的关系如图所示.
如果你是厂长,应采用哪种销售方案可使每天获利最大,最大利润是多少?并确定相应的生产方案.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=ax2+bx-1经过点A(一1,0)、B(m,0)(m>0),且与y轴交于点C
(1)求抛物线对应的函数表达式(用含m的式子表示);
(2)如图,⊙M经过A、B、C三点,求扇形MBC(阴影部分)的面积S(用含m的式子表示);
(3)若抛物线上存在点P,使得△APB△ABC,求m的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知二次函数y=ax2+bx+c(a≠0)的顶点坐标(-1,-3.2)及部分图象(如图),由图象可知关于x的方程ax2+bx+c=0的两个根分别是x1=1.3和x2=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知二次函y=-x2-2x+m的部分图象如图所示,则关于x的一元二次方程-x2-2x+m=0的解为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数y=x2+mx+m-2,说明:无论m取何实数,抛物线总与x轴有两个交点.

查看答案和解析>>

同步练习册答案