【题目】阅读一段文字,再回答下列问题:已知在平面内两点的坐标为,,则该两点间距离公式为.同时,当两点在同一坐标轴上或所在直线平行于轴、平行于轴时,两点间的距离公式可化简成与.
(1)若已知两点,,试求两点间的距离;
(2)已知点在平行于轴的直线上,点的纵坐标为7,点的纵坐标为,试求两点间的距离;
(3)已知一个三角形各顶点的坐标为,,,你能判定这三点是否共线?若共线请说明理由,若不共线请求出图形的面积.
【答案】(1);(2)9;(3)A,B,C三点不共线,△ABC的面积为.
【解析】
(1)根据两点间的距离公式进行计算即可;
(2)根据点M,N在平行于y轴的直线上,可以利用两点间的距离公式进行计算;
(3)先求出A、B、C三点中,任意两点之间的距离,可判断出三点不共线,进一步可判断三角形ABC的形状,从而可求得其面积.
解:(1)∵点A(3,3),B(-2,-1),
∴AB=,
即A,B两点间的距离是;
(2)∵点M,N在平行于y轴的直线上,点M的纵坐标为7,点N的纵坐标为-2,
∴MN=|-2-7|=9,
即M,N两点间的距离是9;
(3)这三点不共线,该三角形为直角三角形.理由如下:
∵一个三角形各顶点的坐标为,
∴AB=,
AC=,
BC=,
∴A,B,C三点不共线.
∵AB2+AC2==BC2,
∴△ABC是直角三角形,
∴S△ABC=ABAC=.
故A,B,C三点不共线,△ABC的面积为.
科目:初中数学 来源: 题型:
【题目】如图,是一种用于装修的人字形梯,合拢时,梯子的长为米,距调查,这种梯子在张角为时最安全.
(1)求梯子最安全时,梯子能达到的最大高度是多少?(精确到米)
(2)装修时,房顶距离地面米,一个人坐在梯子最顶端时,他的手臂能达到的最大高度比梯子最顶端高出米.要使装修正常进行,那么梯子张角至多为多少度?(精确到度)
(参考数据:,,,)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下图的转盘被划分成六个相同大小的扇形,并分别标上1,2,3,4,5,6这六个数字,指针停在每个扇形的可能性相等。四位同学各自发表了下述见解:
甲:如果指针前三次都停在了3号扇形,下次就一定不会停在3号扇形;
乙:只要指针连续转六次,一定会有一次停在6号扇形;
丙:指针停在奇数号扇形的概率与停在偶数号扇形的概率相等;
丁:运气好的时候,只要在转动前默默想好让指针停在6号扇形,指针停在6号扇形的可能性就会加大。
其中,你认为正确的见解有( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于点A,B,与y轴交于点C,直线BC的解析式为y=﹣x+6.
(1)求抛物线的解析式;
(2)点M为线段BC上方抛物线上的任意一点,连接MB,MC,点N为抛物线对称轴上任意一点,当M到直线BC的距离最大时,求点M的坐标及MN+NB的最小值;
(3)在(2)中,点M到直线BC的距离最大时,连接OM交BC于点E,将原抛物线沿射线OM平移,平移后的抛物线记为y′,当y′经过点M时,它的对称轴与x轴的交点记为H.将△BOE绕点B逆时针旋转60°至△BO1E1,再将△BO1E1沿着直线O1H平移,得到△B1O2E2,在平面内是否存在点F,使以点C,H,B1,F为顶点的四边形是以B1H为边的菱形.若存在,直接写出点B1的横坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,顶点为D的抛物线y=﹣x2+x+4与y轴交于点A,与x轴交于两点B、C(点B在点C的左边),点A与点E关于抛物线的对称轴对称,点B、E在直线y=kx+b(k,b为常数)上.
(1)求k,b的值;
(2)点P为直线AE上方抛物线上的任意一点,过点P作AE的垂线交AE于点F,点G为y轴上任意一点,当△PBE的面积最大时,求PF+FG+OG的最小值;
(3)在(2)中,当PF+FG+OG取得最小值时,将△AFG绕点A按顺时方向旋转30°后得到△AF1G1,过点G1作AE的垂线与AE交于点M.点D向上平移个单位长度后能与点N重合,点Q为直线DN上任意一点,在平面直角坐标系中是否存在一点S,使以S、Q、M、N为顶点且MN为边的四边形为菱形?若存在,直接写出点S的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,方格中,每个小正方形的边长都是单位1,△ABC在平面直角坐标系中的位置如图.
(1)画出将△ABC向右平移2个单位得到△A1B1C1.
(2)画出将△ABC绕点O顺时针方向旋转90°得到的△A2B2C2.
(3)在x轴上找一点P,满足点P到点C1与C2距离之和最小,并求出P点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠B=90°,AB=12mm,BC=24mm,动点P从点A开始沿边AB向B以2mm/s的速度移动(不与点B重合),动点Q从点B开始沿边BC向C以4mm/s的速度移动(不与点C重合).如果P、Q分别从A、B同时出发,设运动的时间为xs,四边形APQC的面积为ymm2.
(1)y与x之间的函数关系式;
(2)求自变量x的取值范围;
(3)四边形APQC的面积能否等于172mm2.若能,求出运动的时间;若不能,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com