精英家教网 > 初中数学 > 题目详情

若x、y为实数,使分式有意义的是

[  ]

A.x=y

B.x=y但x、y不能都为0

C.x≠y

D.x=0,y为一切实数

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知,如图,在直角坐标系内,△ABC的顶点在坐标轴上,关于x的方程x2-4x+m2-2m+5=0有实数根,并且AB、AC的长分别是方程两根的5倍.
(1)求AB、AC的长;
(2)若tan∠ACO=
43
,P是AB的中点,求过C、P两点的直线解析式;
(3)在(2)问的条件下,坐标平面内是否存在点M,使以点O、M、P、C为顶点的四边形是平精英家教网行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,将Rt△BCO置于平面直角坐标系xoy中,斜边OB在y轴的正半轴上,过点B作BA∥OC交x轴于点A,点C的纵坐标为8,tan∠BOC=0.5.
(1)求B点坐标;
(2)点P在线段OB上,OP与OB的长分别是关于x的方程x2-(m+10)x+2m2=0的两个实数根,求线段OP的长;
(3)在x轴上是否存在点D,使以点A、B、P、D为顶点的四边形为梯形?若存在,请直接写出直线PD的解析式;若不存在,说明理由.精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•郑州模拟)如图1所示,已知二次函数y=ax2-6ax+c与x轴分别交于点A(2,0)、B(4,0),与y轴交于点C(0,-8t)(t>0).
(1)求a、c的值及抛物线顶点D的坐标(用含t的代数式表示);
(2)如图1,连接AC,将△OAC沿直线AC翻折,若点O的对应点O′恰好落在该抛物线的对称轴上,求实数t的值;
(3)如图2,在正方形EFGH中,点E、F的坐标分别是(4,-4)、(4,-3),边HG位于边EF的右侧.若点P是边EF或边FG上的任意一点(不与E、F、G重合),请你说明以PA、PB、PC、PD的长度为边长不能构成平行四边形;
(4)将(3)中的正方形EFGH水平移动,若点P是正方形边FG或EH上任意一点,在水平移动过程中,是否存在点P,使以PA、PB、PC、PD的长度为边长构成平行四边形,其中PA、PB为对边.若存在,请直接写出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图18-1所示,已知二次函数与x轴分别交于点A(2,0)、
B(4,0),与y轴交于点C(0,-8t)(t>0)
【小题1】求a、c的值及抛物线顶点D的坐标(用含t的代数式表示);
【小题2】如图18-1,连接AC,将△OAC沿直线AC翻折,若点O的对应点O′恰好落在该抛物线的对称轴上,求实数t的值;
【小题3】如图18-2,在正方形EFGH中,点E、F的坐标分别是(4,-4)、(4,-3),边HG位于边EF的右侧.若点P是边EF或边FG上的任意一点(不与E、F、G重合),请你说明以PA、PB、PC、PD的长度为边长不能构成平行四边形;
【小题4】将(3)中的正方形EFGH水平移动,若点P是正方形边FG或EH上任意一点,在水平移动过程中,是否存在点P,使以PA、PB、PC、PD的长度为边长构成平行四边形,其中PA、PB为对边.若存在,请直接写出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2013年河南省郑州市中考第二次质量预测数学试卷(解析版) 题型:解答题

如图1所示,已知二次函数y=ax2-6ax+c与x轴分别交于点A(2,0)、B(4,0),与y轴交于点C(0,-8t)(t>0).
(1)求a、c的值及抛物线顶点D的坐标(用含t的代数式表示);
(2)如图1,连接AC,将△OAC沿直线AC翻折,若点O的对应点O′恰好落在该抛物线的对称轴上,求实数t的值;
(3)如图2,在正方形EFGH中,点E、F的坐标分别是(4,-4)、(4,-3),边HG位于边EF的右侧.若点P是边EF或边FG上的任意一点(不与E、F、G重合),请你说明以PA、PB、PC、PD的长度为边长不能构成平行四边形;
(4)将(3)中的正方形EFGH水平移动,若点P是正方形边FG或EH上任意一点,在水平移动过程中,是否存在点P,使以PA、PB、PC、PD的长度为边长构成平行四边形,其中PA、PB为对边.若存在,请直接写出t的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案