精英家教网 > 初中数学 > 题目详情

【题目】如图,一艘巡逻艇航行至海面B处时,得知正北方向上距B处20海里的C处有一渔船发生故障,就立即指挥港口A处的救援艇前往C处营救.已知C处位于A处的北偏东45°的方向上,港口A位于B的北偏西30°的方向上.求A、C之间的距离.(结果精确到0.1海里,参考数据 ≈1.41, ≈1.73)

【答案】解:作AD⊥BC,垂足为D,

由题意得,∠ACD=45°,∠ABD=30°,
设CD=x,在Rt△ACD中,可得AD=x,
在Rt△ABD中,可得BD= x,
又∵BC=20,即x+ x=20,
解得:
∴AC= x≈10.3(海里).
答:A、C之间的距离为10.3海里.
【解析】作AD⊥BC,垂足为D,设CD=x,利用解直角三角形的知识,可得出AD,继而可得出BD,结合题意BC=CD+BD=20海里可得出方程,解出x的值后即可得出答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知如图,四边形ABCD的四个顶点的坐标分别为A(0,0)、B(9,0)、C(7,5)、D(2,7).

(1)试计算四边形ABCD的面积;

(2)若将该四边形各顶点的横坐标都加2,纵坐标都加3,其面积怎么变化?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为弘扬敬老爱老传统美德,某校八年级(1)班的学生要去距离学校10km的敬老院看望老人,一部分学生骑自行车先走,过了20min后,其余学生乘汽车出发,结果乘汽车的同学早到10min.已知汽车的速度是骑车学生的4倍,求骑车学生的速度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知直线y=kx+b经过点A(5,0),B(1,4).

(1)求直线AB的解析式;

(2)若直线y=2x﹣4与直线AB相交于点C,求点C的坐标;

(3)根据图象,写出关于x的不等式2x﹣4>kx+b的解集.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在城镇化建设中,开发商要处理A地大量的建筑垃圾,A地只能容纳1台装卸机作业,装卸机平均每6分钟可以给工程车装满一车建筑垃圾,每辆工程车要将建筑垃圾运送至20千米的B处倾倒,每次倾倒时间约为1分钟,倾倒后立即返回A地等候下一次装运,直到装运完毕;工程车的平均速度为40千米/时.

(1)一辆工程车运送一趟建筑垃圾(从装车到返回)需要多少分钟?

(2)至少安排多少辆工程车既能保证装卸机不空闲,又能保证工程车最少等候时间?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)因式分解:﹣xyz2+4xyz﹣4xy

2)因式分解:9m+n2m﹣n2

3)解方程: .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某化妆品店老板到厂家选购AB两种品牌的化妆品,若购进A品牌的化妆品5套,B品牌的化妆品6套,需要950元;若购进A品牌的化妆品3套,B品牌的化妆品2套,需要450元.

AB两种品牌的化妆品每套进价分别为多少元?

若销售1A品牌的化妆品可获利30元,销售1B品牌的化妆品可获利20元,根据市场需求,化妆品店老板决定,购进B品牌化妆品的数量比购进A品牌化妆品数量的2倍还多4套,且B品牌化妆品最多可购进40套,这样化妆品全部售出后,可使总的获利不少于1200元,问有几种进货方案?如何进货?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,AD=2ABFAD的中点,作CEAB,垂足E在线段AB上,连接EFCF,则下列结论中一定成立的是 ( )

2DCF=BCDEF=CFSBEC=2SCEF④∠DFE=3AEF

A. ①②③④ B. ①②④ C. ①② D. ②③

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某电脑公司开发出一种软件,从研发到年初上市后,经历了从亏损到盈利的过程,如图中的图象是抛物线的一段,它刻画了该软件上市以来累积利润S(万元)与销售时间t(月)之间的函数关系(即前t个月的利润总和S与t之间的函数关系),根据图象提供的信息,解答下列问题:
(1)该种软件上市第几个月后开始盈利?
(2)求累积利润S(万元)与时间t(月)之间的函数表达式;
(3)截止到几月末,公司累积利润达到30万元?
(4)求公司第6个月末所累积的利润.

查看答案和解析>>

同步练习册答案