【题目】如图,四边形ABCD是边长为2,一个锐角等于60°的菱形纸片,小芳同学将一个三角形纸片的一个顶点与该菱形顶点D重合,按顺时针方向旋转三角形纸片,使它的两边分别交CB、BA(或它们的延长线)于点E、F,∠EDF=60°,当CE=AF时,如图1小芳同学得出的结论是DE=DF.
(1)继续旋转三角形纸片,当CE≠AF时,如图2小芳的结论是否成立?若成立,加以证明;若不成立,请说明理由;
(2)再次旋转三角形纸片,当点E、F分别在CB、BA的延长线上时,如图3请直接写出DE与DF的数量关系;
(3)连EF,若△DEF的面积为y,CE=x,求y与x的关系式,并指出当x为何值时,y有最小值,最小值是多少?
【答案】(1)成立,证明见解析;(2)DF=DE.(3)当x=0时,y最小值=.
【解析】
试题分析:(1)如图1,连接BD.根据题干条件首先证明∠ADF=∠BDE,然后证明△ADF≌△BDE(ASA),得DF=DE;
(2)如图2,连接BD.根据题干条件首先证明∠ADF=∠BDE,然后证明△ADF≌△BDE(ASA),得DF=DE;
(3)根据(2)中的△ADF≌△BDE得到:S△ADF=S△BDE,AF=BE.所以△DEF的面积转化为:y=S△BEF+S△ABD.据此列出y关于x的二次函数,通过求二次函数的最值来求y的最小值.
试题解析:(1)DF=DE.理由如下:
如图1,连接BD.
∵四边形ABCD是菱形,
∴AD=AB.
又∵∠A=60°,
∴△ABD是等边三角形,
∴AD=BD,∠ADB=60°,
∴∠DBE=∠A=60°
∵∠EDF=60°,
∴∠ADF=∠BDE.∵在△ADF与△BDE中,
,
∴△ADF≌△BDE(ASA),
∴DF=DE;
(2)DF=DE.理由如下:
如图2,连接BD.
∵四边形ABCD是菱形,
∴AD=AB.
又∵∠A=60°,
∴△ABD是等边三角形,
∴AD=BD,∠ADB=60°,
∴∠DBE=∠A=60°
∵∠EDF=60°,
∴∠ADF=∠BDE.
∵在△ADF与△BDE中,
,
∴△ADF≌△BDE(ASA),
∴DF=DE;
(3)由(2)知,△ADF≌△BDE.则S△ADF=S△BDE,AF=BE=x.
依题意得:y=S△BEF+S△ABD=(2+x)xsin60°+×2×2sin60°=(x+1)2+.
即y=(x+1)2+.
∵>0,
∴该抛物线的开口方向向上,
∴当x=0即点E、B重合时,y最小值=.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点,的坐标分别为,,现同时将点,分别向上平移个单位,再向右平移个单位,分别得到点,的对应点,,连接,,.(三角形可用符号表示,面积用符号表示)
(1)直接写出点,的坐标.
(2)在轴上是否存在点,连接,,使,若存在,请求出点的坐标;若不存在,请说明理由.
(3)点在直线上运动,连接,.
①若在线段之间时(不与,重合),求的取值范围;
②若在直线上运动,请直接写出,,的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一座拱桥的截面轮廓为抛物线型(如图1),拱高6米,跨度20米,相邻两支柱间的距离均为5米.
(1)将抛物线放在所给的直角坐标系中(如图2所示),其表达式是的形式. 请根据所给的数据求出的值.
(2)求支柱MN的长度.
(3)拱桥下地平面是双向行车道(正中间DE是一条宽2米的隔离带),其中的一条行车道能否并排行驶宽2米、高3米的三辆汽车(汽车间的间隔忽略不计)?请说说你的理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠BAC=90°,AD是中线,E是AD的中点,过点A作AF∥BC交BE的延长线于F,连接CF.
(1)求证:AD=AF;
(2)如果AB=AC,试判断四边形ADCF的形状,并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,分别沿矩形纸片ABCD和正方形EFGH纸片的对角线AC,EG剪开,拼成如图2所示的平行四边形KLMN,若中间空白部分恰好是正方形OPQR.
(1)若AB=m,BC=n,用含m、n的代数式表示正方形EFGH的边长;
(2)若正方形EFGH的面积为25,求平行四边形KLMN的面积;
(3)平行四边形KLMN是否能为菱形?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】周末,小李8时骑自行车从家里出发,到野外郊游,16时回到家里.他离家的距离s(千米)与时间t(时)之间的函数关系可以用图中的折线表示.现有如下信息:
(1)小李到达离家最远的地方的时间是14时;
(2)小李第一次休息时间是10时;
(3)11时到12时,小李骑了5千米;
(4)返回时,小李的平均车速是10千米/时.
其中,正确的信息有___________________(填番号).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了解学生对各种球类运动的喜爱程度,小明采取随机抽样的方法对他所在学校的部分学生进行问卷调查(每个被调查的学生必须选择而且只能选择其中一种项目),对调查结果进行统计后,绘制了下面的统计图(1)和图(2).
(1)此次被调查的学生共有___人,m=_____;
(2)求喜欢“乒乓球”的学生的人数,并将条形统计图补充完整;
(3)若该校有2000名学生,估计全校喜欢“足球”的学生大约有多少人?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com