【题目】如图,半圆O的直径AB=10,有一条定长为6的动弦CD在弧AB上滑动(点C、点D分别不与点A、点B重合),点E、F在AB上,EC⊥CD,FD⊥CD.
(1)求证:EO=OF;
(2)联结OC,如果△ECO中有一个内角等于45°,求线段EF的长;
(3)当动弦CD在弧AB上滑动时,设变量CE=x,四边形CDFE面积为S,周长为l,问:S与l是否分别随着x的变化而变化?试用所学的函数知识直接写出它们的函数解析式及函数定义域,以说明你的结论.
【答案】(1)详见解析;(2)线段EF的长等于或;(3).
【解析】
(1)过点O作OH⊥CD于H,由垂径定理得出CH=DH,证得EC∥OH∥FD,即可得出结论;
(2)由勾股定理求出,由平行线的性质得出∠ECO=∠COH≠45°;分两种情况讨论:
①当∠EOC=45°时,过点E作EM⊥OC于M,则△OEM是等腰直角三角形,得出EM=OM,证明△ECM∽△COH,得出EM:CM=CH:OH=3:4.设EM=3m,CM=4m.则OM=3m,EO=OM=m,由CM+OM=OC,得出方程4m+3m=5,解方程得出,即可得出,EF=.
②当∠CEO=45°时,过点O作ON⊥EC于N;.在Rt△CON中,ON=CH=3,CN=OH=4.在Rt△EON中,.得出即可.
(3)证明OH是梯形EFDC的中位线,由梯形中位线定理得出EC+FD=2OH=8,由梯形面积公式得出S=(EC+FD)CD=OHCD=244×6=24(0<x<8);作FG⊥EC于G,则GC=FD=8﹣x,GF=CD=6,求出EG=EC﹣GC=2x﹣8,由勾股定理得 ,得出四边形CDFE周长l=EF+EC+CD+FD=.
(1)证明:过点O作OH⊥CD于H,如图所示:
则CH=DH,
∵EC
∴EC∥OH∥FD,
∵CH=DH,
∴EO=FO;
(2)解:∵OH⊥CD,,
∴,
∴,
∵EC∥OH,
∴∠ECO=∠COH≠45°;
①当∠EOC=45°时,过点E作EM⊥OC于M,
则△OEM是等腰直角三角形,
∴EM=OM,
∵∠ECM=∠COH,∠CME=∠OHC=90°,
∴△ECM∽△COH,
∴EM:CM=CH:OH=3:4.
在Rt△ECM中,设EM=3m,CM=4m.则OM=3m, ,
∵CM+OM=OC,
∴4m+3m=5,
解得: ,
∴,
.
②当∠CEO=45°时,过点O作ON⊥EC于N;.
在Rt△CON中,ON=CH=3,CN=OH=4.
在Rt△EON中,.
∴.
综上所述,线段EF的长等于或.
(3)解:四边形CDFE的面积S不随变量x的变化而变化,是一个不变量;
四边形CDFE的周长l随变量x的变化而变化.理由如下:
由①得:EO=FO,CH=DH,
∴OH是梯形EFDC的中位线,
∴EC+FD=2OH=8,
∴四边形CDFE面积为(是一个常值函数);
作FG⊥EC于G,则GC=FD=8﹣x,GF=CD=6,
∴EG=EC﹣GC=x﹣(8﹣x)=2x﹣8,
∴,
∴四边形CDFE周长
,
即.
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+2经过点A(1,0),B(4,0),交y轴于点C;
(1)求抛物线的解析式(用一般式表示);
(2)点D为y轴右侧抛物线上一点,是否存在点D使S△ABC=S△ABD?若存在,请求出点D坐标;若不存在,请说明理由;
(3)将直线BC绕点B顺时针旋转45°,与抛物线交于另一点E,求BE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,B(2m,0),C(3m,0)是平面直角坐标系中两点,其中m为常数,且m>0,E(0,n)为y轴上一动点,以BC为边在x轴上方作矩形ABCD,使AB=2BC,画射线OA,把△ADC绕点C逆时针旋转90°得△A′D′C′,连接ED′,抛物线()过E,A′两点.
(1)填空:∠AOB= °,用m表示点A′的坐标:A′( , );
(2)当抛物线的顶点为A′,抛物线与线段AB交于点P,且时,△D′OE与△ABC是否相似?说明理由;
(3)若E与原点O重合,抛物线与射线OA的另一个交点为点M,过M作MN⊥y轴,垂足为N:
①求a,b,m满足的关系式;
②当m为定值,抛物线与四边形ABCD有公共点,线段MN的最大值为10,请你探究a的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学校要印刷一批艺术节的宣传资料,在需要支付制版费100元和每份资料0.3元印刷费的前提下,甲、乙两个印刷厂分别提出了不同的优惠条件.甲印刷厂提出:所有资料的印刷费可按9折收费;乙印刷厂提出:凡印刷数量超过200份的,超过部分的印刷费可按8折收费.
(1)设该学校需要印刷艺术节的宣传资料x份,支付甲印刷厂的费用为y元,写出y关于x的函数关系式,并写出它的定义域;
(2)如果该学校需要印刷艺术节的宣传资料600份,那么应该选择哪家印刷厂比较优惠?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在平行四边形ABCD中,AC为对角线,E是边AD上一点,BE⊥AC交AC于点F,BE、CD的延长线交于点G,且∠ABE=∠CAD.
(1)求证:四边形ABCD是矩形;
(2)如果AE=EG,求证:AC2=BCBG.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC的边AB是⊙O的直径,点C在⊙O上,已知AC=6cm,BC=8cm,点P、Q分别在边AB、BC上,且点P不与点A、B重合,BQ=kAP(k>0),联接PC、PQ.
(1)求⊙O的半径长;
(2)当k=2时,设AP=x,△CPQ的面积为y,求y关于x的函数关系式,并写出定义域;
(3)如果△CPQ与△ABC相似,且∠ACB=∠CPQ,求k的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC的边AB是⊙O的直径,点C在⊙O上,已知AC=6cm,BC=8cm,点P、Q分别在边AB、BC上,且点P不与点A、B重合,BQ=kAP(k>0),联接PC、PQ.
(1)求⊙O的半径长;
(2)当k=2时,设AP=x,△CPQ的面积为y,求y关于x的函数关系式,并写出定义域;
(3)如果△CPQ与△ABC相似,且∠ACB=∠CPQ,求k的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一条笔直的公路上有AB两地,小明骑自行车从A地去B地,小刚骑电动车从B地去A地然后立即原路返回到B地,如图是两人离B地的距离y(千米)和行驶时间x(小时)之间的函数图象.请根据图象回答下列问题:
(1)AB两地的距离是_____,小明行驶的速度是_____.
(2)若两人间的距离不超过3千米时,能够用无线对讲机保持联系,那么小刚从A地原路返回到B地途中,两人能够用无线对讲机保持联系的x的取值范围是______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线:与轴交于、两点,与轴交于点,且,.若抛物线与抛物线关于直线对称.
(1)求抛物线与抛物线的解析式:
(2)在抛物线上是否存在一点,在抛物线上是否存在一点,使得以为边,且以、、、为顶点的四边形为平行四边形?若存在,求出、两点的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com