A. | $\frac{π}{2}$ | B. | 2 | C. | π | D. | 1 |
分析 连接OD,先由直径AB=2,CA切⊙O于A得出OB=OA=2,∠BAC=90°,由∠C=45°得出△ABC是等腰直角三角形,根据圆周角定理得出∠AOD=90°,根据S阴影=S△ABC-S△OBD-S扇形AOD+(S扇形BOD-S△OBD)进而可得出结论.
解答 解:连接OD,
∵直径AB=2,CA切⊙O于A,
∴OB=OA=2,∠BAC=90°,
∵∠C=45°,
∴△ABC是等腰直角三角形,
∴∠B=45°,
∴∠AOD=90°,
∴S阴影=S△ABC-S△OBD-S扇形AOD+(S扇形BOD-S△OBD)
=S△ABC-2S△OBD-S扇形AOD+S扇形BOD
=S△ABC-2S△OBD
=$\frac{1}{2}$×2×2-2×$\frac{1}{2}$×1×1-
=2-1
=1.
故选D.
点评 本题考查的是扇形面积的计算,根据题意作出辅助线,构造出等腰三角形与扇形是解答此题的关键.
科目:初中数学 来源: 题型:选择题
A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 48° | B. | 58° | C. | 66° | D. | 68° |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 1cm,2cm,3cm | B. | 2cm,3cm,4cm | C. | 4cm,5cm,6cm | D. | 1cm,$\sqrt{2}$cm,$\sqrt{3}$cm |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 5 | B. | 7 | C. | 8 | D. | 11 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\frac{\sqrt{3}}{3}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | 1 | D. | $\sqrt{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com