【题目】已知,点A为⊙0外一点,过A作⊙O的切线与⊙O相切于点P,连接PO并延长至圆上一点B连接AB交⊙O于点C,连接OA交⊙O于点D连接DP且∠OAP=∠DPA。
(1)求证:PO=PD
(2)若AC=,求⊙O的半径。
【答案】(1)见解析;(2)半径.
【解析】
(1)设∠OAP=∠DPA=x,根据三角形外角的性质和切线的性质,分别表示出∠ODP和∠OPD,根据∠OPD=∠ODP可求出x=30°,易得△ODP是等边三角形,结论得证;
(2)设半径为r,则AP=,然后用勾股定理求得,最后根据切割线定理列出方程求解即可.
解:(1)设∠OAP=∠DPA=x,则∠ODP=2x,
∵PA为切线,
∴∠OPA=90°,
∴∠OPD=90°-x,
∵∠OPD=∠ODP,
∴90°-x=2x,
解得:x=30°,
∴∠ODP=∠OPD=90°-x=60°,
∴△ODP是等边三角形,
∴PO=PD;
(2)设半径为r,
由(1)得∠OAP=30°,
∴AP=,
∴,
由切割线定理可得:AP2=AC·AB,即,
解得:.
科目:初中数学 来源: 题型:
【题目】现有五个小球,每个小球上面分别标着 1,2,3,4,5 这五个数字中的一个,这些小球除标的数字不同以外,其余的全部相同.把分别标有数字 4、5 的两个小球放入不透明的口袋 A 中,把分别标有数 字 1、2、3 的三个小球放入不透明的口袋 B 中.现随机从 A 和 B 两个口袋中各取出一个小球,把 从 A 口袋中取出的小球上标的数字记作 m,从B口袋中取出的小球上标的数字记作 n,且 m-n=k,则 y 关于 x 的二次函数 与 x 轴有交点的概率是_________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明跳起投篮,球出手时离地面m,球出手后在空中沿抛物线路径运动,并在距出手点水平距离4m处达到最高度4m.已知篮筐中心距地面3m,与球出手时的水平距离为8m,建立如图所示的平面直角坐标系.
(1)求此抛物线对应的函数关系式;
(2)此次投篮,球能否直接命中篮筐中心?若能,请说明理由;若不能,在出手的角度和力度都不变的情况下,球出手时距离地面多少米可使球直接命中篮筐中心?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A是射线y═(x≥0)上一点,过点A作AB⊥x轴于点B,以AB为边在其右侧作正方形ABCD,过点A的双曲线y=交CD边于点E,则的值为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2019年4月22日是第50个世界地球日,某校在八年级5个班中,每班各选拔10名学生参加“环保知识竞赛”并评出了一、二、三等奖各若干名,学校将获奖情况绘成如图所示的不完整的条形统计图和扇形统计图,请你根据图中信息解答下列问题:
(1)求本次竞赛获奖的总人数,并补全条形统计图;
(2)求扇形统计图中“二等奖”所对应扇形的圆心角度数;
(3)如果该校八年级有800人,请你估计获奖的同学共有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图1在Rt△ABC中,∠C=90°,AC=8cm,BC=6cm,点P由点B出发沿BA方向向点A匀速运动,速度为2cm/s;同时点Q由点A出发沿AC方向点C匀速运动,速度为lcm/s;连接PQ,设运动的时间为t秒(0<t<5),解答下列问题:
(1)当为t何值时,PQ∥BC;
(2)设△AQP的面积为y(cm2),求y关于t的函数关系式,并求出y的最大值;
(3)如图2,连接PC,并把△PQC沿QC翻折,得到四边形PQPC,是否存在某时刻t,使四边形PQP'C为菱形?若存在,求出此时t的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC=5,BC=6,点M在△ABC内,AM平分∠BAC.点E与点M在AC所在直线的两侧,AE⊥AB,AE=BC,点N在AC边上,CN=AM,连接ME,BN.
(1)补全图形;
(2)求ME:BN的值;
(3)问:点M在何处时BM+BN取得最小值?确定此时点M的位置,并求此时BM+BN的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=﹣x2+x+2与x轴交于点A,B,与y轴交于点C.
(1)试求A,B,C的坐标;
(2)将△ABC绕AB中点M旋转180°,得到△BAD.3
①求点D的坐标;
②判断四边形ADBC的形状,并说明理由;
(3)在该抛物线对称轴上是否存在点P,使△BMP与△BAD相似?若存在,请直接写出所有满足条件的P点的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com