精英家教网 > 初中数学 > 题目详情
2.如图,在?ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=6,AB=5,则AE的长为(  )
A.10B.8C.6D.4

分析 先求AB=BE=5,利用勾股定理求AH=EH=4,得AE=8.

解答 解:∵AG平分∠BAD,
∴∠BAG=∠DAG,
∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠AEB=∠DAG,
∴∠BAG=∠AEB,
∴AB=BE=5,
由作图可知:AB=AF,
∠BAE=∠FAE,
∴BH=FH=3,BF⊥AE,
由勾股定理得:AH=EH=4,
∴AE=8,
故选B.

点评 本题考查了平行四边形的性质、勾股定理、角平分线的作法和定义、等腰三角形三线合一的性质,熟练掌握平行加角平分线可得等腰三角形,属于常考题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

12.如图所示是五个棱长为“1”的小立方块组成的一个几何体,下列选项中不是三视图其中之一的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.某种股票原价格为a元,连续两天上涨,每次涨幅10%,则该股票两天后的价格为(  )
A.1.21a元B.1.1a元C.1.2a元D.(0.2+a) 元

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.由6个大小相同的正方体搭成的几何体如图所示,比较它的正视图、左视图和俯视图的面积,则(  )
A.三个视图的面积一样大B.主视图的面积最小
C.左视图的面积最小D.俯视图的面积最小

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.探究:小明在求同一坐标轴上两点间的距离时发现,对于平面直角坐标系内任意两点P1(x1,y1),P2(x2,y2),可通过构造直角三角形利用图1得到结论:P1P2=$\sqrt{{{({{x_2}-{x_1}})}^2}+{{({{y_2}-{y_1}})}^2}}$他还利用图2证明了线段P1P2的中点P(x,y)P的坐标公式:x=$\frac{{{x_1}+{x_2}}}{2}$,y=$\frac{{{y_1}+{y_2}}}{2}$.

(1)请你帮小明写出中点坐标公式的证明过程;
运用:(2)①已知点M(2,-1),N(-3,5),则线段MN长度为$\sqrt{61}$;
②直接写出以点A(2,2),B(-2,0),C(3,-1),D为顶点的平行四边形顶点D的坐标:(-3,3)或(7,1)或(-1,-3);
拓展:(3)如图3,点P(2,n)在函数y=$\frac{4}{3}$x(x≥0)的图象OL与x轴正半轴夹角的平分线上,请在OL、x轴上分别找出点E、F,使△PEF的周长最小,简要叙述作图方法,并求出周长的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.已知抛物线y=x2-x-2经过点(m,5),则m2-m+2的值为(  )
A.7B.8C.9D.10

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.如图,在Rt△ABC中,∠ACB=90°,点D,E分别是AB,AC的中点,点F是AD的中点.若AB=8,则EF=2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.我们定义:如图1,在△ABC中,把AB点绕点A顺时针旋转α(0°<α<180°)得到AB',把AC绕点A逆时针旋转β得到AC',连接B'C'.当α+β=180°时,我们称△A'B'C'是△ABC的“旋补三角形”,△AB'C'边B'C'上的中线AD叫做△ABC的“旋补中线”,点A叫做“旋补中心”.
特例感知:
(1)在图2,图3中,△AB'C'是△ABC的“旋补三角形”,AD是△ABC的“旋补中线”.
①如图2,当△ABC为等边三角形时,AD与BC的数量关系为AD=$\frac{1}{2}$BC;
②如图3,当∠BAC=90°,BC=8时,则AD长为4.
猜想论证:
(2)在图1中,当△ABC为任意三角形时,猜想AD与BC的数量关系,并给予证明.
拓展应用
(3)如图4,在四边形ABCD,∠C=90°,∠D=150°,BC=12,CD=2$\sqrt{3}$,DA=6.在四边形内部是否存在点P,使△PDC是△PAB的“旋补三角形”?若存在,给予证明,并求△PAB的“旋补中线”长;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.计算(-3)+5的结果等于(  )
A.2B.-2C.8D.-8

查看答案和解析>>

同步练习册答案