精英家教网 > 初中数学 > 题目详情
(2013•武汉)如图,已知△ABC是⊙O的内接三角形,AB=AC,点P是
AB
的中点,连接PA,PB,PC.
(1)如图①,若∠BPC=60°.求证:AC=
3
AP;
(2)如图②,若sin∠BPC=
24
25
,求tan∠PAB的值.
分析:(1)根据圆周角定理得∠BPC=∠BAC=60°,可判断△ABC为等边三角形,∠ACB=∠ABC=60°,再利用圆周角定理得到∠APC=∠ABC=60°,而点P是
AB
的中点,则∠ACP=
1
2
∠ACB=30°,于是∠PAC=90°,然后根据30度的正切可计算出AC=
3
AP;
(2)过A点作AD⊥BC交BC于D,连结OP交AB于E,根据垂径的推论得到点O在AD上,连结OB,根据圆周角定理得∠BOD=∠BAC,∠BPC=∠BAC,所以sin∠BOD=sin∠BPC=
24
25
=
BD
OB
,设OB=25x,则BD=24x,在Rt△OBD中可计算出OD=7x,再在Rt△ABD计算出AB=40x,由于点P是
AB
的中点,根据垂径定理的推论OP垂直平分AB,则AE=
1
2
AB=20x,
在Rt△AEO中,根据勾股定理计算出OE=15x,所以PE=OP-OE=25x-15x=10x,最后在Rt△APE中,利用正切的定义求解.
解答:解:(1)∵∠BPC=60°,
∴∠BAC=60°,
∵AB=AC,
∴△ABC为等边三角形,
∴∠ACB=∠ABC=60°,
∴∠APC=∠ABC=60°,
而点P是
AB
的中点,
∴∠ACP=
1
2
∠ACB=30°,
∴∠PAC=90°,
∴tan∠PCA=
PA
AC
=tan30°=
3
3

∴AC=
3
PA;

(2)过A点作AD⊥BC交BC于D,连结OP交AB于E,如图,
∵AB=AC,
∴AD平分BC,
∴点O在AD上,
连结OB,则∠BOD=∠BAC,
∵∠BPC=∠BAC,
∴sin∠BOD=sin∠BPC=
24
25
=
BD
OB

设OB=25x,则BD=24x,
∴OD=
OB2-BD2
=7x,
在Rt△ABD中,AD=25x+7x=32x,BD=24x,
∴AB=
AD2+BD2
=40x,
∵点P是
AB
的中点,
∴OP垂直平分AB,
∴AE=
1
2
AB=20x,∠AEP=∠AEO=90°,
在Rt△AEO中,OE=
AO2-AE2
=15x,
∴PE=OP-OE=25x-15x=10x,
在Rt△APE中,tan∠PAE=
PE
AE
=
10x
20x
=
1
2

即tan∠PAB的值为
1
2
点评:本题考查了垂径定理:垂直于弦的直径平分弦,并且平分弦所对的弧.也考查了勾股定理、圆周角定理和解直角三角形.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•武汉)如图,△ABC中,AB=AC,∠A=36°,BD是AC边上的高,则∠DBC的度数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•武汉)如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(-3,2),B(0,4),C(0,2).
(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C;平移△ABC,若点A的对应点A2的坐标为(0,-4),画出平移后对应的△A2B2C2
(2)若将△A1B1C绕某一点旋转可以得到△A2B2C2;请直接写出旋转中心的坐标;
(3)在x轴上有一点P,使得PA+PB的值最小,请直接写出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•武汉)如图,⊙A与⊙B外切于点D,PC,PD,PE分别是圆的切线,C,D,E是切点.若∠CDE=x°,∠ECD=y°,⊙B的半径为R,则
DE
的长度是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•武汉)如图是由四个大小相同的正方体组合而成的几何体,其主视图是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•武汉)如图,已知四边形ABCD是平行四边形,BC=2AB.A,B两点的坐标分别是(-1,0),(0,2),C,D两点在反比例函数y=
kx
(k<0)的图象上,则k等于
-12
-12

查看答案和解析>>

同步练习册答案