精英家教网 > 初中数学 > 题目详情
(2013•黄冈)如图,有四张背面相同的纸牌A,B,C,D,其正面分别是红桃、方块、黑桃、梅花,其中红桃、方块为红色,黑桃、梅花为黑色.小明将这4张纸牌背面朝上洗匀后,摸出一张,将剩余3张再摸出一张.
(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌用A,B,C,D表示);
(2)求摸出的两张牌同为红色的概率.
分析:(1)画出树状图即可;
(2)根据树状图可以直观的得到共有12种情况,都是红色情况有2种,进而得到概率.
解答:解:(1)如图所示:

(2)根据树状图可得共有12种情况,都是红色情况有2种,
概率为
2
12
=
1
6
点评:本题考查概率公式,即如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=
m
n
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•黄冈)如图,矩形ABCD中,AB=4,BC=3,边CD在直线l上,将矩形ABCD沿直线l作无滑动翻滚,当点A第一次翻滚到点A1位置时,则点A经过的路线长为

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•黄冈)如图,四边形ABCD是菱形,对角线AC、BD相交于点O,DH⊥AB于H,连接OH,求证:∠DHO=∠DCO.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•黄冈)如图,小山顶上有一信号塔AB,山坡BC的倾角为30°,现为了测量塔高AB,测量人员选择山脚C处为一测量点,测得塔顶仰角为45°,然后顺山坡向上行走100米到达E处,再测得塔顶仰角为60°,求塔高AB(结果保留整数,
3
≈1.73,
2
≈1.41)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•黄冈)如图,在平面直角坐标系中,四边形ABCD是梯形,其中A(6,0),B(3,
3
),C(1,
3
),动点P从点O以每秒2个单位的速度向点A运动,动点Q也同时从点B沿B→C→O的线路以每秒1个单位的速度向点O运动,当点P到达A点时,点Q也随之停止,设点P,Q运动的时间为t(秒).
(1)求经过A,B,C三点的抛物线的解析式;
(2)当点Q在CO边上运动时,求△OPQ的面积S与时间t的函数关系式;
(3)以O,P,Q顶点的三角形能构成直角三角形吗?若能,请求出t的值;若不能,请说明理由;
(4)经过A,B,C三点的抛物线的对称轴、直线OB和PQ能够交于一点吗?若能,请求出此时t的值(或范围),若不能,请说明理由).

查看答案和解析>>

同步练习册答案