精英家教网 > 初中数学 > 题目详情

【题目】如图,将ABC的边AB绕着点A顺时针旋转)得到AB′,边AC绕着点A逆时针旋转)得到AC′,联结B′C′,+=60°时,我们称AB′C′ABC双旋三角形,如果等边ABC的边长为a, 那么它所得的双旋三角形B′C′=___________(用含a的代数式表示).

【答案】

【解析】

ADB′C′于点D,根据题意与旋转和等边三角形的的性质可得,△AB′C′是顶角为120°的等腰三角形,再根据等腰三角形的性质可得∠DA B′=60°,B′C′=2 B′D,根据sinDA B′=即可得解.

解:作ADB′C′于点D

∵△ABC为等边三角形,+=60°

AB′=AC′,∠B′AC′=120°,

∴∠B′=30°,∴B′D=a

B′C′=.

故答案为:.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD中,点EFH分别是ABBCCD的中点,CEDF交于G,连接AGHG.下列结论:①CEDF;②AGDG;③∠CHG=∠DAG;④2HGAD.正确的有(

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,同时将点A(﹣10)、B30)向上平移2个单位长度再向右平移1个单位长度,分别得到AB的对应点CD.连接ACBD

1)求点CD的坐标,并描出ABCD点,求四边形ABDC面积;

2)在坐标轴上是否存在点P,连接PAPC使SPACS四边形ABCD?若存在,求点P坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD,对角线ACBD相交于点O,E是线段BO上的一个动点(可以与OB重合),点F为射线DC上一点,∠ABC=60,∠AEF=120AB=5,则EF的取值范围是_____.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,三角形(记作)在方格中,方格纸中的每个小方格都是边长为1个单位的正方形,三个顶点的坐标分别是,先将向上平移3个单位长度,再向右平移2个单位长度,得到.

(1)在图中画出

(2)点的坐标分别为______、______;

(3)若轴有一点,使面积相等,求出点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中有RtABC,已知∠CAB=90°,AB=ACA(-2,0),B(0,1).

(1)点C的坐标是

(2)将△ABC沿x轴正方向平移得到△A BC′,且BC两点的对应点B′,C′恰好落在反比例函数的图象上,求该反比例函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】天水某公交公司将淘汰某一条线路上冒黑烟较严重的公交车,计划购买A型和B型两行环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元,

1)求购买A型和B型公交车每辆各需多少万元?

2)预计在该条线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1220万元,且确保这10辆公交车在该线路的年均载客量总和不少于650万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】媒体报道,近期“手足口病”可能进入发病高峰期,某校根据《学校卫生工作条例》,为预防“手足口病”,对教室进行“薰药消毒”.已知药物在燃烧及释放过程中,室内空气中每立方米含药量y(毫克)与燃烧时间x(分钟)之间的关系如图所

示(即图中线段OA和双曲线在A点及其右侧的部分),根据图象所示信息,解答下列问题:

(1)写出从药物释放开始,y与x之间的函数关系式及自变量的取值范围;

(2)据测定,当空气中每立方米的含药量低于2毫克时,对人体无毒害作用,那么从消毒开始,至少在多长时间内,师生不能进入教室?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列叙述正确的是(

A. 如果ab是实数,那么a+b=b+a”是不确定事件

B. 某班50位同学中恰有2位同学生日是同一天是随机事件

C. 为了了解一批炮弹的杀伤力,采用普查的调查方式比较合适

D. 某种彩票的中奖概率为,是指买7张彩票一定有一张中奖

查看答案和解析>>

同步练习册答案