精英家教网 > 初中数学 > 题目详情
如图,AB是⊙O的直径,AC是弦,∠BAC的平分线AD交⊙O于点D,DE是⊙O的切线,交AC的延长精英家教网线于点E.求证:
(1)DE⊥AC;
(2)若AE=4,ED=2,求⊙O的半径.
分析:(1)连接OD,只需证明OD⊥DE即可;
(2利用勾股定理求出AD,再得出△AED∽△ADB,进而求出半径即可.
解答:精英家教网(1)证明:连接OD(1分),
∵OA=OD,
∴∠OAD=∠ODA,
又∵AD平分∠BAC,
∴∠CAD=∠DAO,
∴∠ODA=∠CAD(3分),
∴OD∥AE,
又∵DE是⊙O的切线(4分),
∴OD⊥DE,
∴DE⊥AC;

(2)解:连接BD
在Rt△AED中,由勾股定理得:(5分)
AD=
AE2+DE2
=
42+22
=2
5

∵AB为⊙O的直径,
∴∠ADB=∠AED=90°,
∵∠CAD=∠DAO,(7分)
∴△AED∽△ADB,(8分)
AE
AD
=
AD
AB
,(9分)
AB=
AD2
AE
=
20
4
=5

∴⊙O的半径为2.5.
点评:考查了切线的判定定理,能够综合运用角平分线的性质、全等三角形的判定和性质以及平行线分线段成比例定理.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

8、如图,AB是铅直地竖立在坡角为30°的山坡上的电线杆,当阳光与水平线成60°角时,电线杆的影子BC的长度为4米,则电线杆AB的高度为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

小亮家窗户上的遮雨罩是一种玻璃钢制品,它的顶部是圆柱侧面的一部分(如图1),它的侧面边缘上有两条圆弧(如图2),其中顶部圆弧AB的圆心O1在竖直边缘AD上,另一条圆弧BC的圆心O2在水平边缘DC的延长线上,其圆心角为90°,请你根据所标示的尺寸(单位:cm)解决下面的问题.(玻璃钢材料的厚度忽略不计,π取3.1416)
(1)计算出弧AB所对的圆心角的度数(精确到0.01度)及弧AB的长度;(精确到0.1cm)
(2)计算出遮雨罩一个侧面的面积;(精确到1cm2
(3)制做这个遮雨罩大约需要多少平方米的玻璃钢材料.(精确到精英家教网0.1平方米)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示是永州八景之一的愚溪桥,桥身横跨愚溪,面临潇水,桥下冬暖夏凉,常有渔船停泊桥下避晒纳凉.已知主桥拱为抛物线型,在正常水位下测得主拱宽24m,最高点离水面8m,以水平线AB为x轴,AB的中点为原点建立坐标系.
①求此桥拱线所在抛物线的解析式.
②桥边有一浮在水面部分高4m,最宽处16m的河鱼餐船,如果从安全方面考虑,要求通过愚溪桥的船只,其船身在铅直方向上距桥内壁的距离不少于0.5m.探索此船能否通过愚溪桥?说明理由.

查看答案和解析>>

科目:初中数学 来源:初中数学解题思路与方法 题型:047

已知如图,AB是半圆直经,△ACD内接于半⊙O,CE⊥AB于E,延长AD交EC的延长线于F,求证:AC·CD=AD·FC.

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

如图,AB是铅直地竖立在坡角为30°的山坡上的电线杆,当阳光与水平线成60°角时,电线杆的影子BC的长度为4米,则电线杆AB的高度为


  1. A.
    4米
  2. B.
    6米
  3. C.
    8米
  4. D.
    10米

查看答案和解析>>

同步练习册答案