精英家教网 > 初中数学 > 题目详情

【题目】对于三个数a,b,c,M{a,b,c}表示这三个数的平均数min{a,b,c}表示这三个数中最小的数.例如:M{-1,2,3}=min{-1,2,3}=-1,如果M{3,2x+1,4x-1}=min{2,-x+3,5x},那么x=____________.

【答案】

【解析】根据题中的运算规则得到M{3,2x+1,4x-1}=1+2x,然后再根据min{2,-x+3,5x}的规则分情况讨论即可得.

M{3,2x+1,4x-1}==2x+1,

M{3,2x+1,4x-1}=min{2,-x+3,5x},

∴有如下三种情况:

2x+1=2,x=,此时min{2,-x+3,5x}= min{2,}=2,成立;

2x+1=-x+3,x=此时min{2,-x+3,5x}= min{2,}=2,不成立;

2x+1=5x,x=此时min{2,-x+3,5x}= min{2,}=成立

x=

故答案为:.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】三角形ABC的三条内角平分线为AEBFCG,下面的说法中正确的个数有(

①△ABC的内角平分线上的点到三边距离相等

②三角形的三条内角平分线交于一点

③三角形的内角平分线位于三角形的内部

④三角形的任一内角平分线将三角形分成面积相等的两部分.

A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则sin∠ECB为(
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,AD=3,∠CAB=30°,点P是线段AC上的动点,点Q是线段CD上的动点,则AQ+QP的最小值是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】数学课上,李老师出示了如下框中的题目.

在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且ED=EC,如图.试确定线段AE与DB的大小关系,并说明理由.

小敏与同桌小聪讨论后,进行了如下解答:

(1)特殊情况,探索结论

当点E为AB的中点时,如图1,确定线段AE与的DB大小关系.请你直接写出结论:

AE DB(填“>”,“<”或“=”).

图1 2

(2)特例启发,解答题目

解:题目中,AE与DB的大小关系是:AE DB(填“>”,“<”或“=”).

理由如下:如图2,过点E作EFBC,交AC于点F.

(请你完成以下解答过程)

(3)拓展结论,设计新题

在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC.若ABC的边长为1,AE=2,求CD的长(请你直接写出结果).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,铁路上AB两点相距25kmCD为两村庄,DAABACBABB,已知DA15kmCB10km,现在要在铁路AB上建一个土特产品收购站E,使得CD两村到E站的距离相等,则E站应建在距A站多少千米处?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,分别以直角三角形ABC三边为直径向外作三个半圆,其面积分别用S1、S2、S3表示,则不难证明S1=S2+S3 .

(1) 如图②,分别以直角三角形ABC三边为边向外作三个正方形,其面积分别用S1、S2、S3表示,那么S1、S2、S3之间有什么关系?(不必证明)

(2) 如图③,分别以直角三角形ABC三边为边向外作三个正三角形,其面积分别用S1、S2、S3表示,请你确定S1、S2、S3之间的关系并加以证明;

(3) 若分别以直角三角形ABC三边为边向外作三个正多边形,其面积分别用S1、S2、S3表示,请你猜想S1、S2、S3之间的关系?.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知网格上最小的正方形的边长为1

1)作△ABC关于轴的对称图形△ABC(不写做法),并写出ABC'的坐标,想一想:关于轴对称的两个点之间有什么关系?

2)求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知某电脑公司有A型、B型、C型三种型号的电脑,其价格分别为A型每台6 000元,B型每台4 000元,C型每台2 500元,我市东坡中学计划将100 500元钱全部用于该电脑公司购进其中两种不同型号的电脑共36台,请你设计出几种不同的购买方案供该校选择,并说明理由.

查看答案和解析>>

同步练习册答案