精英家教网 > 初中数学 > 题目详情

【题目】背景资料:

在已知ABC所在平面上求一点P,使它到三角形的三个顶点的距离之和最小.

这个问题是法国数学家费马1640年前后向意大利物理学家托里拆利提出的,所求的点被人们称为“费马点”.

如图,当ABC三个内角均小于120°时,费马点PABC内部,此时APB=∠BPC=∠CPA=120°,此时,PAPBPC的值最小.

解决问题:

(1)如图②,等边ABC内有一点P,若点P到顶点ABC的距离分别为3,4,5,求APB的度数.

为了解决本题,我们可以将ABP绕顶点A旋转到ACP′处,此时ACP′≌△ABP,这样就可以利用旋转变换,将三条线段PAPBPC转化到一个三角形中,从而求出APB=   

基本运用:

(2)请你利用第(1)题的解答思想方法,解答下面问题

如图③,△ABC中,CAB=90°,AB=ACEFBC上的点,且EAF=45°,判断BEEFFC之间的数量关系并证明;

能力提升:

(3)如图,在Rt△ABC中,C=90°,AC=1,∠ABC=30°,点PRt△ABC的费马点,

连接APBPCP,求PA+PB+PC的值.

【答案】(1)150°;

(2)E′F2=CE′2+FC2,理由见解析;

(3)

【解析】试题分析:(1)

(2)首先把△ACE绕点A顺时针旋转90°,得到△ACE′.连接E′F,由旋转的性质得,AE′=AE,CE′=BE,∠CAE′=∠BAE,∠ACE′=∠B,∠EAE′=90°,然后再证明△EAF≌△E′AF可得E′F=EF,,再利用勾股定理可得结论

(3)AOB绕点B顺时针旋转60°至A′O′B处,连接OO′,根据已知证明C、O、A′、O′四点共线,在RtA′BC中,利用勾股定理求得A′C的长,根据新定义即可得OA+OB+OC =

试题解析:(1)∵△ABC为等边三角形,

∴AB=AC,∠BAC=60°,

∴将△ABP绕顶点A逆时针旋转60°得到△ACP′,如图,连结PP′,

∴AP=AP′=3,∠PAP′=60°,P′C=PB=4,∠APB=∠AP′C,

∴△APP′为等边三角形,

∴∠PP′A=60°,PP′=AP=3,

在△PP′C中,∵PP′=3,P′C=4,PC=5,

∴PP′2+P′C2=PC2

∴△PP′C为直角三角形,∠PP′C=90°,

∴∠AP′C=∠PP′A+∠PP′C=60°+90°=150°,

∴∠APB=150°,

故答案为:150°;

(2)E′F2=CE′2+FC2,理由如下

如图2,把ABE绕点A逆时针旋转90°得到△ACE′,

由旋转的性质得,AE′=AE,CE′=BE,∠CAE′=∠BAE,∠ACE′=∠B,∠EAE′=90°,

∵∠EAF=45°,

∴∠E′AF=∠CAE′+∠CAF=∠BAE+∠CAF=∠BAC﹣∠EAF=90°﹣45°=45°,

∴∠EAF=∠E′AF,

EAF和E′AF中,

∴△EAF≌△E′AF(SAS),

∴E′F=EF,

∵∠CAB=90°,AB=AC,

∴∠B=∠ACB=45°,

∴∠E′CF=45°+45°=90°,

由勾股定理得,E′F2=CE′2+FC2,即EF2=BE2+FC2

(3)如图3,将AOB绕点B顺时针旋转60°至A′O′B处,连接OO′,

Rt△ABC中,∠C=90°,AC=1,∠ABC=30°,∴AB=2,

BC==

∵△AOB绕点B顺时针方向旋转60°,∴△A′O′B如图所示;

∠A′BC=∠ABC+60°=30°+60°=90°,

∵∠C=90°,AC=1,∠ABC=30°,∴AB=2AC=2,

∵△AOB绕点B顺时针方向旋转60°,得到△A′O′B,

∴A′B=AB=2,BO=BO′,A′O′=AO,

∴△BOO′是等边三角形

∴BO=OO′,∠BOO′=∠BO′O=60°,

∵∠AOC=∠COB=∠BOA=120°,

∴∠COB+∠BOO′=∠BO′A′+∠BO′O=120°+60°=180°,

C、O、A′、O′四点共线,

RtA′BC中,A′C===

OA+OB+OC=A′O′+OO′+OC=A′C=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】计算:

14a2ab)﹣(2a+b)(2ab

2)(2x+122x1)(x+3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】坐火车从上海到娄底,高铁G1329次列车比快车K575次列车少需要9小时,已知上海到娄底的铁路长约1260千米,G1329的平均速度是K5752.5倍.

1)求K575的平均速度;

2)高铁G1329从上海到娄底只需几小时?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中国倡导的一带一路建设将促进我国与世界各国的互利合作.根据规划,一带一路地区覆盖总人口约为4400000000人,这个数用科学记数法表示为 (   )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠AOB90°BOC60°,射线OM平分∠AOCON平分∠BOC

1)求∠MON的度数;

2)如果(1)中,∠AOBαBOCββ为锐角),其他条件不变,求∠MON的度数;

3)从(1)、(2)的结果中,你能得到什么规律?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列命题是真命题的是(  )

A.内错角相等

B.平面内,过一点有且只有一条直线与已知直线垂直

C.相等的角是对顶角

D.过一点有且只有一条直线与已知直线平行

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校八年级学生会为了解本年级600名学生的睡眠情况,将同学们某天的睡眠时长t(小时)分为ABCDEA9t24B8t9C7t8D6t7E0t6)五个选项,进行了一次问卷调查,随机抽取n名同学的调查问卷并进行了整理,绘制成如下条形统计图,根据统计图提供的信息解答下列问题:

1)求n的值;

2)根据统计结果,估计该年级600名学生中睡眠时长不足7小时的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,边长为6的正方形OABC的顶点AC分别在x轴和y轴的正半轴上,直线y=mx+2OCBC两边分别相交于点DG,以DG为边作菱形DEFG,顶点EOA边上.

1)如图1,顶点F在边AB上,当CG=OD时,

m的值;

菱形DEFG是正方形吗?如果是请给予证明.

2)如图2,连接BF,设CG=a△FBG的面积为S,求Sa的函数关系式;

3)如图3,连接GE,当GD平分∠CGE时,请直接写出m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是一个用来盛爆米花的圆锥形纸杯,纸杯开口的直径 EF 长为10cm,母线OE(OF)长为10cm,在母线OF 上的点A 处有一块爆米花残渣且FA2cm,一只蚂蚁从杯口的点E 处沿圆锥表面爬行到A ,则此蚂蚁爬行的最短距离为 cm

查看答案和解析>>

同步练习册答案