精英家教网 > 初中数学 > 题目详情
3.一元二次方程x2+x-1=0 的根的情况为(  )
A.有两个相等的实数根B.有两个不相等的实数根
C.只有一个实数根D.没有实数根

分析 先计算判别式的值,然后根据判别式的意义可判断方程根的情况.

解答 解:∵△=12-4×(-1)=5>0,
∴方程有两个不相等的两个实数根.
故选B.

点评 本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

13.若x2+5x+8=a(x+1)2+b(x+1)+c,则a=1,b=3,c=4.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,在平面直角坐标系中,反比例函数y=$\frac{k}{x}$ (x>0)的图象和矩形ABCD在第一象限,AD平行于x轴,且AB=2,AD=4,点A的坐标为(2,6).
(1)直接写出B、C、D三点的坐标;
(2)若将矩形向下平移,矩形的两个顶点A、C恰好同时落在反比例函数的图象上,请求矩形的平移距离和反比例函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.如果三角形的一个外角的平分线平行于三角形的一边,那么这个三角形是(  )
A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.若一等腰三角形的底边为2,底边上的高是$\sqrt{3}$,则其顶角的大小为(  )
A.60°B.90°C.120°D.150°

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.如图,点E、F、G、H分别在菱形ABCD的四条边上,且BE=BF=DG=DH,连接EF,FG,GH,HE得到四边形EFGH,∠A=60°.设AE=x,四边形EFGH的面积为s与边AE的关系为s=-$\sqrt{3}{x}^{2}$+4$\sqrt{3}$x,则菱形边长为4.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,AB⊥BC,DC⊥BC,垂足分别为B、C,设AB=4,DC=1,BC=4.
(1)求线段AD的长.
(2)在线段BC上是否存在点P,使△APD是等腰三角形?若存在,求出线段BP的长;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.列方程或方程组解应用题:
公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图阴影部分),原空地一边减少了1m,另一边减少了2m,剩余空地的面积为20m2,求原正方形空地的边长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.下列实数$\frac{2}{3}$,$\sqrt{3}$,$\root{3}{8}$,$\sqrt{4}$,$\frac{π}{3}$,0.1,-0.010010001…,0,2.333…,其中无理数共有(  )
A.2个B.3个C.4个D.5个

查看答案和解析>>

同步练习册答案