精英家教网 > 初中数学 > 题目详情

【题目】如图,直线ABCD相交于点OAOD=120°,FOODOE平分∠BOD

(1)求∠EOF的度数;

(2)试说明OB平分∠EOF

【答案】(1)60°;(2)证明见解析.

【解析】

1)利用邻补角的性质求出∠BOD,再利用角平分线的性质求出∠EOD,由垂直的定义即可得到结论;

2)由垂直和∠BOD的度数可求出∠FOB,然后与∠BOE比较即可得出结论.

1)∵AB为一直线,∠AOD=120°,∴∠BOD=60°

OE平分∠BOD,∴∠EOD=EOB =DOB= 30°

OFOD,∴∠FOD=90°,∴∠EOFFOD EOD90°30°60°

2)∵∠FOD=90°,∠BOD=60°,∴∠FOB=∠FODBOD90°60°30°

∵∠BOE30°,∴∠BOF=∠BOE,∴OB平分∠EOF

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】一个几何体及它的表面展开图如图所示.(几何体的上、下底面均为梯形)
(1)写出这个几何体的名称;
(2)计算这个几何体的侧面积和左视图的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知多项式2x2+x3+x﹣5x4

(1)请指出该多项式是几次几项式,并写出它的二次项、一次项和常数项;

(2)按要求把这个多项式重新排列:①按x的降幂排列;②按x的升幂排列.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在三角形ABC中,BC=14,AC=9,AB=13,它的内切圆分别和BC、AC、AB切于点D、E、F,那么AF、BD、CE的长分别为(  )

A.AF=4,BD=9,CE=5
B.AF=4,BD=5,CE=9
C.AF=5,BD=4,CE=9
D.AF=9,BD=4,CE=5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点P,Q分别是∠AOB的边OA,OB上的点.

(1)过点POB的垂线,垂足为H;

(2)过点QOA的垂线,交OA于点C,连接PQ;

(3)线段QC的长度是点Q 的距离, 的长度是点P到直线OB的距离,因为直线外一点和直线上各点连接的所有线段中,垂线段最短,所以线段PQ、PH的大小关系是 (用“<”号连接).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,Rt△ABC的内切圆⊙O与AB、BC、CA分别相切于点D、E、F,且∠ACB=90°,AB=5,BC=3,点P是边AC上的一动点,PH⊥AB,垂足为H.
(1)求⊙O的半径的长及线段AD的长;
(2)设PH=x,PC=y,求y关于x的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等腰△ABC中,CA=CB,AD是腰BC边上的高,△ACD的内切圆⊙E分别与边AD、BC相切于点F、G,连AE、BE.
(1)求证:AF=BG;
(2)过E点作EH⊥AB于H,试探索线段EH与线段AB的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在数轴上,点A表示-5,点B表示10.动点P从点A出发,沿数轴正方向以每秒1个单位的速度匀速运动;同时,动点Q从点B出发,沿数轴负方向以每秒2个单位的速度匀速运动.设运动时间为t.

(1)当t 秒时,PQ两点相遇,求出相遇点所对应的数;

(2)当t为何值时,PQ两点的距离为3个单位长度,并求出此时点P对应的数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】A,B两点在数轴上的位置如图所示,O为原点,现A,B两点分别以1个单位长度/秒的速度同时向左运动。

(1)几秒后,原点恰好在A,B两点正中间?

(2)几秒后,恰好有OA:OB=1:2.

查看答案和解析>>

同步练习册答案