分析 (1)由旋转角为45°可知△OB′H为等腰直角三角形,可知OH=B′H,又由旋转的性质可知OB′=OB,则可求得OH的长,可求得B′点的坐标;
(2)由条件可证明△A′OF为等边三角形,可求得∠FOB′=∠ABO=30°,可证明AB∥OB′.
解答 解:
(1)在Rt△AOB中,AO=2,∠BAO=60°,
∴AB=2AO=4,则OB=2$\sqrt{3}$,
∵将Rt△AOB绕直角顶点O顺时针旋转45°得△A′B′O,
∴∠A′OF=∠AOF-∠AOA′=90°-45°=45°,
∴∠B′OH=∠A′OB′-∠A′OF=90°-45°,
∴△OB′H为等腰直角三角形,
又OB′=OB=2$\sqrt{3}$,
在Rt△OB′H中,由勾股定理可得2OH2=OB′2,
∴OH=B′H=$\sqrt{6}$,
∴B′点坐标为($\sqrt{6}$,-$\sqrt{6}$);
(2)由旋转可知∠OA′B′=∠OAB=60°,
∵四边形OAGF为正方形,
∴OA′=OA=OF,
∴△A′OF为等边三角形,
∴∠A′OF=60°,
∴∠BOB′=90°-60°=30°=∠ABO,
∴AB∥OB′.
点评 本题主要考查旋转的性质,掌握旋转的性质是解题的关键,即旋转前后两个图形全等、旋转角相等.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 30 | B. | 36 | C. | 40 | D. | 48 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 3 | B. | 5 | C. | 6 | D. | 8 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com