精英家教网 > 初中数学 > 题目详情
如图,已知直线l1的解析式为y=3x+6,直线l1与x轴,y轴分别相交于A,B两点,直线l2经过B,C两点,点C的坐标为(8,0),又已知点P在x轴上从点A向点C移动,点Q在直线l2从点C向点B移动.点P,Q同时出发,且移动的速度都为每秒1个单位长度,设移动时间为t秒(1<t<10).
(1)求直线l2的解析式;
(2)设△PCQ的面积为S,请求出S关于t的函数关系式;
(3)试探究:当t为何值时,△PCQ为等腰三角形?
【答案】分析:(1)因为l1过点B,所以代入直线l1的解析式求得点B的坐标,又因为直线l2经过B,C两点,所以将点B、C的坐标代入直线y=kx+b,列方程组即可求得;
(2)过Q作QD⊥x轴于D,则△CQD∽△CBO,得出,由题意,知OA=2,OB=6,OC=8,BC==10,得出,故QD=t,即可求得函数解析式;
(3)要想使△PCQ为等腰三角形,需满足CP=CQ,或QC=QP,或PC=PQ.
解答:解:(1)由题意,知B(0,6),C(8,0),
设直线l2的解析式为y=kx+b,则
解得k=-,b=6,
则l2的解析式为y=-x+6;

(2)解法一:如图,过P作PD⊥l2于D,
∵∠PDC=∠BOC=90°,∠DCP=∠OCB
∴△PDC∽△BOC

由题意,知OA=2,OB=6,OC=8
∴BC==10,PC=10-t
=
∴PD=(10-t)
∴S△PCQ=CQ•PD=t•(10-t)=-t2+3t;

解法二:如图,过Q作QD⊥x轴于D,
∵∠QDC=∠BOC=90°,∠QCD=∠BCO
∴△CQD∽△CBO

由题意,知OA=2,OB=6,OC=8
∴BC==10

∴QD=t
∴S△PCQ=PC•QD=(10-t)•t=-t2+3t;

(3)∵PC=10-t,CQ=t,
要想使△PCQ为等腰三角形,需满足CP=CQ,或QC=QP,或PC=PQ,
∴当CP=CQ时,由题10-t=t,得t=5(秒);
当QC=QP时,=,即=解得t=(秒);
当PC=PQ时,=,即=,解得t=(秒);
即t=5或
点评:此题考查了一次函数与三角形的综合知识,要注意待定系数法的应用,要注意数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知直线l1的解析式为y=3x+6,直线l1与x轴,y轴分别相交于A,B两点,直线l2经过B,C两点,点C的坐标为(8,0),又已知点P在x轴上从点A向点C移动,点Q在直线l2从点C精英家教网向点B移动.点P,Q同时出发,且移动的速度都为每秒1个单位长度,设移动时间为t秒(1<t<10).
(1)求直线l2的解析式;
(2)设△PCQ的面积为S,请求出S关于t的函数关系式;
(3)试探究:当t为何值时,△PCQ为等腰三角形?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知直线L1的解析式为y=1.5x+6,直线L1与x轴、y轴分别相交于A、B两点,直线L2经过B、C两点,点C的坐标为(8,0),又已知点P在x轴上从点A向点C移动,点Q在精英家教网直线L2从点C向点B移动(一点到达终点,另一点即停止运动).点P、Q同时出发,移动的速度都为每秒1个单位长度,设移动时间为t秒.
(1)求直线L2的解析式;
(2)设△PCQ的面积为S,请求出S关于t的函数关系式;
(3)是否存在某一时刻,当过P、Q两点的直线平分△OCB的周长时,△PCQ的面积达到最大?若存在,求出此时点Q的坐标;若不存在,请说明理由;
(4)试探究:当t为何值时,△PCQ为等腰三角形?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知直线l1的解析式为y=3x+6,直线l1,与x轴、y轴分别相交于A,B两点,直线l2经过B,C两点,点C的坐标为(8,0).又已知点P在x轴上从点A向点C移动,点Q在直线l2上从点C向点B移动,点P,Q同时出发,且移动的速度都为每秒1个单位长度,设移动时间为t s(1<t<10).
(1)求直线l2的解析式;
(2)设△PCQ的面积为S,请求出S关于t的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知直线l1的解析式为y=3x+6,直线l1与x轴、y轴分别相交于A、B两点,直线l2经过B、C两点,点C的坐标为(8,0),又已知点P在x轴上从点A向点C移动,点Q在直线l2从点C向点B移动.点P、Q同时出发,且移动的速度都为每秒1个单位长度,设移动时间为t秒(1<t<10).
(1)求直线l2的解析式;
(2)设△PCQ的面积为S,请求出S关于t的函数关系式;
(3)对于(2)中的△PCQ的面积S是否存在最大值?若不存在,请说明理由;若存在,求出当t为何值时,S有最大值,最大值是多少?
(4)试探究:当t 为何值时,△PCQ为等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知直线l1的解析式为y=3x+6,直线l1与x轴、y轴分别相交于A、B两点,直线l2经过B、C两点,点C的坐标为(8,0),点D是AC的中点,点Q从点C沿△BOC的三边按逆时针方向以每秒1个单位长度的速度运动一周,设移动时间为t秒
(1)求直线l2的解析式;
(2)设△DCQ的面积为S,请求出S关于t的函数关系式,并写出t的取值范围;
(3)试探究:点P在x轴上以每秒1个单位长度的速度从点A向点C运动,若点P与点Q同时出发,当其中一个点到达终点时,另一点也随之停止运动,t为何值时,以点P、Q、C为顶点的三角形与△BOC相似.

查看答案和解析>>

同步练习册答案