精英家教网 > 初中数学 > 题目详情

完成填空,如图AB∥CD,AE平分∠BAC,CE平分∠ACD.求证:AE⊥CE.
证明:∵AB∥CD
∴∠BAC+∠ACD=180°________
∵AE平分∠BAC,CE平分∠ACB________
∴∠1=数学公式∠BAC,∠2=数学公式∠ACD
∴∠1+∠2=数学公式∠BAC+数学公式∠ACD
=数学公式(∠BAC+∠ACD)
=数学公式×180°
=90°
∵∠1+∠2+∠E=180°________
∴∠E=180°-(∠1+∠2)
=180°-90°
=90°
∴AE⊥CE________.

两直线平行,同旁内角互补    已知    三角形内角和定理    垂直的定义
分析:由AB∥CD,根据两直线平行,同旁内角互补,即可得∠BAC+∠ACD=180°,又由AE平分∠BAC,CE平分∠ACD,即可求得∠1+∠2=90°,然后由三角形的内角和定理,即可求得∠E=90°,继而可证得AE⊥CE.
解答:证明:∵AB∥CD,
∴∠BAC+∠ACD=180° (两直线平行,同旁内角互补),
∵AE平分∠BAC,CE平分∠ACB( 已知),
∴∠1=∠BAC,∠2=∠ACD,
∴∠1+∠2=∠BAC+∠ACD
=(∠BAC+∠ACD)
=×180°
=90°,
∵∠1+∠2+∠E=180° (三角形内角和定理)
∴∠E=180°-(∠1+∠2)
=180°-90°
=90°,
∴AE⊥CE (垂直的定义).
故答案为:两直线平行,同旁内角互补;已知;三角形内角和定理;垂直的定义.
点评:此题考查了平行线的性质、三角形内角和定理以及垂直的定义.此题难度不大,注意掌握数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图①:要设计一幅宽20cm,长30cm的矩形图案,其中有两横两竖的彩条,横、竖彩条的宽度比为2:3,如果要使所有彩条所占面积为原矩形图案面积的三分之一,应如何设计每个彩条的宽度?
分析:由横、竖彩条的宽度比为2:3,可设每个横彩条的宽为2x,则每个竖彩条的宽为3x.为更好地寻找题目中的等量关系,将横、竖彩条分别集中,原问题转化为如图②的情况,得到矩形ABCD.
结合以上分析完成填空:
如图②:用含x的代数式表示:AB=
 
cm;AD=
 
cm;矩形ABCD的面积为
 
cm2;列出方程并完成本题解答.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图①,要设计一幅宽20cm,长60cm的长方形图案,其中有两横两竖的彩条,横、竖彩条的宽度比为4:3,如果要使所有彩条所占面积为原长方形图案面积的三分之一,应如何设计每个彩条的宽度?
分析:由横、竖彩条的宽度比为4:3,可设每个横彩条的宽为4x,则每个竖彩条的宽为3x.为更好地寻找题目中的等量关系,将横、竖彩条分别集中,原问题转化为如图②的情况,得到长方形ABCD.
(1)结合以上分析完成填空:如图②,用含x的代数式表示:AB=
 
cm;AD精英家教网=
 
cm;长方形ABCD的面积为
 
cm2
(2)列出方程并完成本题解答.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•桥西区模拟)注意:为了使同学们更好地解答本题,下面提供了一种解题思路,你可以依照这个思路填空,并完成本题解答的全过程.如果你选用其他的解题方案,此时,不必填空,只需按照解答题的一般要求,进行解答即可.
如图①,要设计一幅宽20cm,长30cm的矩形图案,其中有两横两竖的彩条,横、竖彩条的宽度比为2:3,如果要使所有彩条所占面积为原矩形图案面积的三分之一,应如何设计每个彩条的宽度?
分析:由横、竖彩条的宽度比为2:3,可设每个横彩条的宽为2x,则每个竖彩条的宽为3x.为更好地寻找题目中的等量关系,将横、竖彩条分别集中,原问题转化为如图②的情况,得到矩形ABCD.
结合以上分析完成填空:如图②,用含x的代数式表示:
AB=
(20-6x)
(20-6x)
cm;
AD=
(30-4x)
(30-4x)
cm;
矩形ABCD的面积为
(24x2-260x+600)
(24x2-260x+600)
 cm2
列出方程并完成本题解答.

查看答案和解析>>

科目:初中数学 来源: 题型:

完成填空,如图AB∥CD,AE平分∠BAC,CE平分∠ACD.求证:AE⊥CE.
证明:∵AB∥CD
∴∠BAC+∠ACD=180°
两直线平行,同旁内角互补
两直线平行,同旁内角互补

∵AE平分∠BAC,CE平分∠ACB
已知
已知

∴∠1=
1
2
∠BAC,∠2=
1
2
∠ACD
∴∠1+∠2=
1
2
∠BAC+
1
2
∠ACD
=
1
2
(∠BAC+∠ACD)
=
1
2
×180°
=90°
∵∠1+∠2+∠E=180°
三角形内角和定理
三角形内角和定理

∴∠E=180°-(∠1+∠2)
=180°-90°
=90°
∴AE⊥CE
垂直的定义
垂直的定义

查看答案和解析>>

同步练习册答案