精英家教网 > 初中数学 > 题目详情
已知二次函数y=ax2-4a图象的顶点坐标为(0,4)矩形ABCD在抛物线与x轴围成的图形内,顶点B、C在x轴上,顶点A、D在抛物线上,且A在D点的右侧,
(1)求二次函数的解析式______;
(2)设点A的坐标为(x,y),试求矩形ABCD的周长L与自变量x的函数关系;
(3)周长为10的矩形ABCD是否存在?若存在,请求出顶点A的坐标;若不存在,请说明理由.
【答案】分析:(1)直接利用待定系数法求解即可:y=-x2+4?;
(2)根据解析式可表示出AD=2x,AB=-x2+4,所以矩形ABCD的周长L与自变量x的函数关系为l=-2x2+4x+8?(0<x<2);
(3)直接把l=10代入解析式求得x=1,结合实际意义可知存在周长为10的矩形ABCD,且点A的坐标为(1,3).
解答:解:(1)由题意得-4a=4
∴a=-1
∴二次函数的解析式为?y=-x2+4
(2)设点A(x,y)
∵点A在抛物线y=-x2+4上
∴y=-x2+4则AD=2x,AB=-x2+4
∴L=2(AD+AB)=2(2x-x2+4)=-2x2+4x+8?(0<x<2?)?
(3)当L=10时-2x2+4x+8=10x2-2x+1=0
∴x1=x2=1
∴当x=1时,y=-1+4=3
∴存在周长为10的矩形ABCD,且点A的坐标为(1,3).
点评:主要考查了用待定系数法求二次函数的解析式和矩形的性质.一般步骤是先设y=ax2+bx+c,再把对应的三个点的坐标代入解出a,b,c的值即可得到解析式.解题关键是利用矩形的性质和二次函数有机的结合在一起,利用数形结合的思想解题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

21、已知二次函数y=a(x+1)2+c的图象如图所示,则函数y=ax+c的图象只可能是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知二次函数y=ax+bx+c的图象与x轴交于点A.B,与y轴交于点 C.

(1)写出A. B.C三点的坐标;(2)求出二次函数的解析式.

查看答案和解析>>

科目:初中数学 来源:2013-2014学年广东省广州市海珠区九年级上学期期末数学试卷(解析版) 题型:选择题

已知二次函数y=ax²+bx+c(a≠0)的图像如图所示,则下列结论中正确的是(   )

A.a>0             B.3是方程ax²+bx+c=0的一个根

C.a+b+c=0          D.当x<1时,y随x的增大而减小

 

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

已知二次函数y=ax+bx+c(a≠0,a,b,c为常数),对称轴为直线x=1,它的部分自变量与函数值y的对应值如下表,写出方程ax2+bx+c=0的一个正数解的近似值________(精确到0.1).
x-0.1-0.2-0.3-0.4
y=ax2+bx+c-0.58-0.120.380.92

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数y=ax²+bx+c(c≠0)的图像如图4所示,下列说法错误的是:

(A)图像关于直线x=1对称

(B)函数y=ax²+bx+c(c ≠0)的最小值是 -4

(C)-1和3是方程ax²+bx+c=0(c ≠0)的两个根

(D)当x<1时,y随x的增大而增大

查看答案和解析>>

同步练习册答案