精英家教网 > 初中数学 > 题目详情
如图,AB为⊙O的直径,PQ切⊙O于T,AC⊥PQ于C,交⊙O于D.
(1)求证:AT平分∠BAC;
(2)若AD=2,TC=,求⊙O的半径.
【答案】分析:(1)PQ切⊙O于T,则OT⊥PC,根据AC⊥PQ,则AC∥OT,要证明AT平分∠BAC,只要证明∠TAC=∠ATO就可以了.
(2)过点O作OM⊥AC于M,则满足垂径定理,在直角△AOM中根据勾股定理就可以求出半径OA.
解答:(1)证明:连接OT;
∵PQ切⊙O于T,
∴OT⊥PQ,
又∵AC⊥PQ,
∴OT∥AC,
∴∠TAC=∠ATO;
又∵OT=OA,
∴∠ATO=∠OAT,
∴∠OAT=∠TAC,
即AT平分∠BAC.

(2)解:过点O作OM⊥AC于M,
∴AM=MD==1;
又∠OTC=∠ACT=∠OMC=90°,
∴四边形OTCM为矩形,
∴OM=TC=
∴在Rt△AOM中,

即⊙O的半径为2.
点评:本题考查了圆的切线性质定理,等腰三角形的性质定理,等边对等角,垂径定理,勾股定理.此题是这几个定理的综合应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知⊙O的直AB=20cm,CD垂AB于E,CD=12cm,AE的长为(  )
A、1cmB、2cmC、3cmD、4cm

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在水塔O的东北方向32m处有一抽水站A,在水塔的东南方向24m处有一建筑工地B,在AB间建一条直水管,则水管的长为
40m
40m

查看答案和解析>>

科目:初中数学 来源:江苏省张家港市2012年中考网上阅卷适应性考试数学试题 题型:013

如图,AB为⊙O的直甲径,PD切⊙O于点C,交AB的延长线于D,且CO=CD,则∠PCA=

[  ]

A.60°

B.65°

C.67.

D.75°

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

如图,已知⊙O的直AB=20cm,CD垂AB于E,CD=12cm,AE的长为


  1. A.
    1cm
  2. B.
    2cm
  3. C.
    3cm
  4. D.
    4cm

查看答案和解析>>

科目:初中数学 来源:2008年福建省福州一中高中招生(面向福州以外)综合素质测试数学试卷(解析版) 题型:选择题

如图,已知⊙O的直AB=20cm,CD垂AB于E,CD=12cm,AE的长为( )

A.1cm
B.2cm
C.3cm
D.4cm

查看答案和解析>>

同步练习册答案