精英家教网 > 初中数学 > 题目详情
如图,在四边形ABCD中,∠BAD=∠BCD=90°,AB=AD,AE⊥BC于点E.若四边形ABCD的面积是16,求AE的长.
分析:A点作CD的垂线,交CD的延长线于F点,则四边形AECF是矩形,易证△ABE≌△ADF,则AE=AF,矩形AECF为正方形,根据正方形的面积可求得边长.
解答:解:过A点作CD的垂线,交CD的延长线于F点,则四边形AECF是矩形.
∵∠BAD=∠EAF=90°,
∴∠BAE=∠DAF,
在△ABE和△ADF中,
∠AEB=∠AFD
∠BAE=∠DAF
AB=AD

∴△ABE≌△ADF(AAS),
∴AE=AF,
又∵四边形AECF是矩形.
∴四边形AECF为正方形,
而四边形ABCD的面积是16,
∴AE=4.
点评:本题考查了正方形的性质,根据全等三角形的证明得出△ABE≌△ADF是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•赤峰)如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.
(1)求证:AE=DF;
(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;
(3)当t为何值时,△DEF为直角三角形?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在四边形ABC中,AD=BC,AB=CD.
求证:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠BAC=90°,将△ABC沿线段BC向右平移得到△DEF,使CE=AE,连结AD、AE、CD,则下列结论:①AD∥BE且AD=BE;②∠ABC=∠DEF;③ED⊥AC;④四边形AECD为菱形,其中正确的共有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,在四边形ABC中,AD=BC,AB=CD.
求证:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中数学 来源:浙江省同步题 题型:证明题

已知:如图,在四边形ABC中,AD=BC,AB=CD.求证:AB∥CD,AD∥BC.

查看答案和解析>>

同步练习册答案