精英家教网 > 初中数学 > 题目详情
提出问题:如图,在“儿童节”前夕,小明和小华分别获得一块分布均匀且形状为等腰梯形和直角梯形的蛋糕(AD∥BC),在蛋糕的边缘均匀分布着巧克力,小明和小华决定只切一刀将自己的这块蛋糕平分(要求分得的蛋糕和巧克力质量都一样).
背景介绍:这条分割直线既平分了梯形的面积,又平分了梯形的周长,我们称这条线为梯形的“等分积周线”.
【小题1】小明很快就想到了一条分割直线,而且用尺规作图作出.请你帮小明在图1中作出这条“等分积周线”,从而平分蛋糕.


【小题2】小华觉得小明的方法很好,所以模仿着在自己的蛋糕(图2)中画了一条直线EF分别交AD、BC于点E、F.你觉得小华会成功吗?如能成功,说出确定的方法;如不能成功,请说明理由
【小题3】通过上面的实践,你一定有了更深刻的认识.若图2中AD∥BC,∠A=90°,AD<BC,AB="4" cm,BC ="6" cm,CD= 5cm.请你找出梯形ABCD的所有“等分积周线”,并简要的说明确定的方法.

【小题1】作线段AD(或BC)的中垂线即可
【小题2】小华不会成功.直线平分梯形ABCD面积,则(AE+BF)AB=(ED+CF)AB
∴AE+BF = ED+CF,又∵AB<CD,∴此时AE+BF+ AB<ED+CF+ CD
∴小华不可能成功                      …………3分
【小题3】可求得:S梯形ABCD=18,C梯形ABCD=18,
由(2)可知直线分别交AD、BC于点E、F时不可能,只要分以下几种情况:
① 当直线分别交AD、AB于E、F时
有 S△AEF≤S△ABD,又∵S△ABD=6<9,∴不可能
同理,当直线分别交AD、CD于E、F时S△AEF≤S△ACD<9,
∴不可能                                  …………4分
②当直线分别交AB、BC于E、F时
设BE=x, 则BF=9?x
由直线平分梯形面积得: x(9?x)=9
求得:x1=3,x2=6>4(舍去)
∴BE=3                        …………6分
③当直线分别交CD、BC于E、F时
设CE="x," 可得:S△ECF=××(9?x)=9
2 x2-18 x+45=0
此方程无解,∴不可能…………8分
④当直线分别交AB、CD于、 E、F时
设CF=x,可得:SBFEC=×(3?)(6?)+= 9
∴  x1=0, 与②同
x2="5" ,BF=?2,舍去      …………10分
综上所述,符合条件的直线共有一条.解析:
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

提出问题:如图①,在四边形ABCD中,P是AD边上任意一点,△PBC与△ABC和△DBC的面积之间有什么关系?精英家教网
探究发现:为了解决这个问题,我们可以先从一些简单的、特殊的情形入手:
(1)当AP=
1
2
AD时(如图②):
精英家教网
∵AP=
1
2
AD,△ABP和△ABD的高相等,
∴S△ABP=
1
2
S△ABD
∵PD=AD-AP=
1
2
AD,△CDP和△CDA的高相等,
∴S△CDP=
1
2
S△CDA
∴S△PBC=S四边形ABCD-S△ABP-S△CDP
=S四边形ABCD-
1
2
S△ABD-
1
2
S△CDA
=S四边形ABCD-
1
2
(S四边形ABCD-S△DBC)-
1
2
(S四边形ABCD-S△ABC
=
1
2
S△DBC+
1
2
S△ABC
(2)当AP=
1
3
AD时,探求S△PBC与S△ABC和S△DBC之间的关系,写出求解过程;
(3)当AP=
1
6
AD时,S△PBC与S△ABC和S△DBC之间的关系式为:
 

(4)一般地,当AP=
1
n
AD(n表示正整数)时,探求S△PBC与S△ABC和S△DBC之间的关系,写出求解过程;
问题解决:当AP=
m
n
AD(0≤
m
n
≤1)时,S△PBC与S△ABC和S△DBC之间的关系式为:
 

查看答案和解析>>

科目:初中数学 来源: 题型:

提出问题:如图,在“儿童节”前夕,小明和小华分别获得一块分布均匀且形状为等腰梯形和直角梯形的蛋糕(AD∥BC),在蛋糕的边缘均匀分布着巧克力,小明和小华决定只切一刀将自己的这块蛋糕平分(要求分得的蛋糕和巧克力质量都一样).
精英家教网
背景介绍:这条分割直线既平分了梯形的面积,又平分了梯形的周长,我们称这条线为梯形的“等分积周线”.
尝试解决:(1)小明很快就想到了一条分割直线,而且用尺规作图作出.请你帮小明在图1中作出这条“等分积周线”,从而平分蛋糕.
(2)小华觉得小明的方法很好,所以模仿着在自己的蛋糕(图2)中画了一条直线EF分别交AD、BC于点E、F.你觉得小华会成功吗?如能成功,说出确定的方法;如不能成功,请说明理由.
(3)通过上面的实践,你一定有了更深刻的认识.若图2中AD∥BC,∠A=90°,AD<BC,AB=4cm,BC=6cm,CD=5cm.请你找出梯形ABCD的所有“等分积周线”,并简要的说明确定的方法.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•浦口区一模)提出问题:
如图,在△ABC中,∠A=90°,分别以边AB、AC向外作正方形ABDE和正方形ACFG,连接EG,小亮发现△ABC与△AEG面积相等.小亮思考:这个问题中,如果∠A≠90°,那么△ABC与△AEG面积是否仍然相等?
猜想结论:
经过研究,小亮认为:上述问题中,对于任意△ABC,分别以边AB、AC向外作正方形ABDE 和正方形 ACFG,连接EG,那么△ABC与△AEG面积相等.
证明猜想:
(1)请你帮助小亮画出图形,并完成证明过程.已知:以△ABC的两边AB、AC为边长分别向外作正方形ABDE、ACFG,连接GE.求证:S△AEG=S△ABC
结论应用:
(2)学校教学楼前的一个六边形花圃被分成七个部分,分别种上不同品种的花卉,其中四边形ABCD、CIHG、GFED均为正方形,且面积分别为9m2、5m2和4m2.求这个六边形花圃ABIHFE的面积.

查看答案和解析>>

科目:初中数学 来源:2012年江苏省九年级中考模拟数学试卷2 题型:解答题

提出问题:如图,在“儿童节”前夕,小明和小华分别获得一块分布均匀且形状为等腰梯形和直角梯形的蛋糕(AD∥BC),在蛋糕的边缘均匀分布着巧克力,小明和小华决定只切一刀将自己的这块蛋糕平分(要求分得的蛋糕和巧克力质量都一样).

背景介绍:这条分割直线既平分了梯形的面积,又平分了梯形的周长,我们称这条线为梯形的“等分积周线”.

1.小明很快就想到了一条分割直线,而且用尺规作图作出.请你帮小明在图1中作出这条“等分积周线”,从而平分蛋糕.

2.小华觉得小明的方法很好,所以模仿着在自己的蛋糕(图2)中画了一条直线EF分别交AD、BC于点E、F.你觉得小华会成功吗?如能成功,说出确定的方法;如不能成功,请说明理由

3.通过上面的实践,你一定有了更深刻的认识.若图2中AD∥BC,∠A=90°,AD<BC,AB=4 cm,BC =6 cm,CD= 5cm.请你找出梯形ABCD的所有“等分积周线”,并简要的说明确定的方法.

 

查看答案和解析>>

同步练习册答案