分析 根据平方差公式,和立方差公式可得前2个式子的结果,利用多项式乘以多项式的方法可得出第3个式子的结果;从而总结出规律是(x-1)(x99+x98+x97+…+x+1)=x100-1;
(1)可在等式的前面乘(2-1),再利用所得的规律计算即可;
(2)可在等式的前面乘(-2-1),再利用所得的规律进行计算,再除以-3即可求得结果;
(3)由x3+x2+x+1=0可得(x-1)(x3+x2+x+1)=0即x4-1=0,求得x的值代入计算即可.
解答 解:观察所给等式可得到(x-1)(x99+x98+x97+…+x+1)=x100-1,
故答案为:x100-1;
(1)299+298+297+…+2+1=(2-1)(299+298+297+…+2+1)=2100-1;
(2)∵(-2-1)[(-2)99+(-2)99+(-2)98+…+(-2)+1]=(-2)100-1=2100-1,
∴(-2)99+(-2)99+(-2)98+…+(-2)+1=(2100-1)÷(-2-1)=$\frac{1-{2}^{100}}{3}$;
(3)∵x3+x2+x+1=0,
∴(x-1)(x3+x2+x+1)=0,即x4-1=0,
解得:x=1(不合题意,舍去)或x=-1,
则x2008=(-1)2008=1.
点评 本题主要考查规律的总结及应用,由所给等式总结出等式的规律是解题的关键.注意规律的灵活运用.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\sqrt{3}$ | B. | $\sqrt{32}$ | C. | $\sqrt{12}$ | D. | $\sqrt{\frac{2}{3}}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com