精英家教网 > 初中数学 > 题目详情
如图,在四边形ABCD中,∠ABC=∠ADC=90°,对角线AC、BD交于点P,且AB=BD,AP=4PC=4,则cos∠ACB的值是
3
3
3
3
分析:作BE⊥AD于E,交AC于O,则BE∥CD.可证明A、B、C、D四点共圆,根据相交弦定理得出PD,则计算出AB,由勾股定理得出BC,从而得出答案.
解答:解:作BE⊥AD于E,交AC于O,则BE∥CD,
由AB=BD得E是AD的中点,因此OE是△ACD的一条中位线,从而O是AC的中点,
以O为圆心,OA为半径作圆,则由∠ABC=∠ADC=90°可知该圆经过A、B、C、D四点,
易知 AP=4,PC=1,AC=AP+PC=5,
因此,OA=OC=2.5.OP=OC-PC=1.5,
由BE∥CD得,BP:PD=OP:PC=1.5,
因此BP=1.5PD,从而 AB=BD=BP+PD=2.5PD,
由相交弦定理得 BP•PD=AP•PC=4,
即 1.5PD2=4,
因此 PD2=
8
3

从而 AB2=(2.5PD)2=6.25PD2=
50
3

由勾股定理得
BC2=AC2-AB2=52-
50
3
=
25
3

因此 BC=
5
3
3

∴cos∠ACB=BC:AC=
3
3
点评:本题考查了直角三角形的性质、等腰三角形的性质以及四点共圆等知识点,综合性较强.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•赤峰)如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.
(1)求证:AE=DF;
(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;
(3)当t为何值时,△DEF为直角三角形?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在四边形ABC中,AD=BC,AB=CD.
求证:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠BAC=90°,将△ABC沿线段BC向右平移得到△DEF,使CE=AE,连结AD、AE、CD,则下列结论:①AD∥BE且AD=BE;②∠ABC=∠DEF;③ED⊥AC;④四边形AECD为菱形,其中正确的共有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,在四边形ABC中,AD=BC,AB=CD.
求证:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中数学 来源:浙江省同步题 题型:证明题

已知:如图,在四边形ABC中,AD=BC,AB=CD.求证:AB∥CD,AD∥BC.

查看答案和解析>>

同步练习册答案