½â£º£¨1£©Áîy=0£¬¼´x
2-2x-3=0£¬Ôòx=3£¬x=-1£¬
¡àA£¨-1£¬0£©£¬B£¨3£¬0£©£»
Áîx=0£¬¼´y=-3£¬
¡àC£¨0£¬-3£©£»
ÓÉÓÚy=x
2-2x-3=£¨x-1£©
2-4£¬
¹Ê¶¥µãD£¨1£¬-4£©£®
£¨2£©ÏàËÆ£¬ÀíÓÉÈçÏ£º
¡ßA£¨-1£¬0£©£¬B£¨3£¬0£©£¬C£¨0£¬-3£©£¬D£¨1£¬-4£©£¬
¡àOA=1£¬OC=3£¬AC=
£»
CD=
£¬BC=3
£¬BD=2
£»
¡à
=
£¬
¹Ê¡÷AOC¡×¡÷DCB£®
£¨3£©·Ö±ð¹ýC¡¢F¡¢G×÷FG¡¢CG¡¢CFµÄƽÐÐÏߣ¬ÈýÏß½»ÓÚH
1¡¢H
2¡¢H
3£¨Èçͼ£©£»
ÔòËıßÐÎCFGH
1¡¢ËıßÐÎCFH
2G¡¢ËıßÐÎH
3FGC¶¼ÊÇƽÐÐËıßÐΣ»
¹ýG×÷GM¡ÍxÖáÓÚM£»
ÓÉÓÚOB=OC=3£¬Ôò¡ÏOBC=45¡ã£»
Ò×ÖªBG=4t£¬ÔòBM=MG=2
t£¬OM=3-2
t£»
¹ÊG£¨3-2
t£¬-2
t£©£»
ÓÉÓÚËıßÐÎCFGH
1¡¢ËıßÐÎCFH
2G¶¼ÊÇƽÐÐËıßÐΣ¬
¹ÊH
1G=GH
2=CF=
t£¬
¡àH
1£¨3-3
t£¬-2
t£©£¬H
2£¨3-
t£¬-2
t£©£»
°ÑH
1´úÈëÅ×ÎïÏߵĽâÎöʽÖеãº
£¨3-3
t£©
2-2£¨3-3
t£©-3=-2
t£¬
¼´9t
2-5
t=0£»
½âµÃt=0£¨ÉáÈ¥£©£¬t=
£»
µ±t=
ʱ£¬H
1£¨-
£¬-
£©£»
°ÑH
2´úÈëÅ×ÎïÏߵĽâÎöʽÖеãº
£¨3-
t£©
2-2£¨3-
t£©-3=-2
t£¬
¼´t
2-
t=0£»
½âµÃt=0£¨ÉáÈ¥£©£¬t=
£»
µ±t=
ʱ£¬H
2£¨1£¬-4£©£»
¹ýG×÷GP¡ÍyÖáÓÚP£¬¹ýH
3×÷H
3Q¡ÍyÖáÓÚQ£»
ÔòÓÐH
3Q=GP-CF=3-2
t-
t=3-3
t£¬CQ=CP=3-2
t£»
¡àOQ=OC+CQ=6-2
t£»
¡àH
3£¨3
t-3£¬2
t-6£©£»
½«H
3´úÈëÅ×ÎïÏߵĽâÎöʽÖУ¬ÓУº
£¨3
t-3£©
2-2£¨3
t-3£©-3=2
t-6£¬
¼´9t
2-13
t+9=0£¬
½âµÃt=
£»
µ±t=
ʱ£¬H
3£¨
£¬
£©£»
µ±t=
ʱ£¬H
4£¨
£¬
£©£®
¹Ê´æÔÚ·ûºÏÌõ¼þµÄHµã£¬ÇÒ£º
µ±t=
ʱ£¬H
1£¨-
£¬-
£©£»
µ±t=
ʱ£¬H
2£¨1£¬-4£©£»
µ±t=
ʱ£¬H
3£¨
£¬
£©£»
µ±t=
ʱ£¬H
4£¨
£¬
£©£®
·ÖÎö£º£¨1£©Å×ÎïÏߵĽâÎöʽÖУ¬Áîy=0£¬¿ÉÇóµÃµãA¡¢BµÄ×ø±ê£¬Áîx=0£¬¿ÉÇóµÃµãCµÄ×ø±ê£»½«Å×ÎïÏߵĽâÎöʽ»¯Îª¶¥µã×ø±êʽ£¬¼´¿ÉÇóµÃµãDµÄ×ø±ê£®
£¨2£©¸ù¾ÝÒÑÖªµÄA¡¢B¡¢C¡¢DµÄ×ø±ê£¬¿ÉÇóµÃÁ½¸öÈý½ÇÐθ÷×ÔµÄÈý±ß³¤£¬È»ºóÖ¤¡÷BCD¡¢¡÷AOCµÄ¶ÔÓ¦±ß³É±ÈÀý¼´¿É£®
£¨3£©´ËÌâ¿ÉÏÈÇó³öÂú×ãÒÔC¡¢F¡¢H¡¢GËĵãΪ¶¥µãµÄƽÐÐËıßÐεÄHµã×ø±ê£¬È»ºó´úÈëÅ×ÎïÏߵĽâÎöʽÖнøÐÐÑéÖ¤¼´¿É£®
·Ö±ð¹ýC¡¢F¡¢G×÷FG¡¢CG¡¢CFµÄƽÐÐÏߣ¬ÄÇôÕâЩƽÐÐÏߵĽ»µã¼´ÎªËùÇóµÄHµã£¬ÉèΪH
1¡¢H
2¡¢H
3£¬¹ýG×÷GN¡ÍxÖáÓÚN£¬ÓÉÓÚ¡ÏOBC=45¡ã£¬¼´¿É¸ù¾ÝBGµÄ³¤±íʾ³öGN¡¢BNµÄÖµ£¬¶øCPµÄ³¤Ò×ÇóµÃ£¬¸ù¾ÝƽÐÐËıßÐεÄÐÔÖÊ£¨Á½×é¶Ô±ßƽÐÐÇÒÏàµÈ£©£¬¼´¿ÉµÃµ½H
1¡¢H
2µÄ×ø±ê£¬È»ºó½«ËüÃÇ´úÈëÅ×ÎïÏߵĽâÎöʽÖнøÐÐÑéÖ¤¼´¿É£¬ÈôËùµÃ·½³ÌÓн⣬ÔòËùµÃµÄ½â¼´Îª·ûºÏÌõ¼þµÄHµã×ø±ê£¬ÈôÎ޽⣬ÔòÊÇ˵Ã÷²»´æÔÚ·ûºÏÌõ¼þµÄHµã£®H
3µÄ×ø±êÇó·¨Í¬ÉÏ£®
µãÆÀ£º´ËÌ⿼²éÁ˶þ´Îº¯ÊýͼÏóÓë×ø±êÖá½»µã×ø±êµÄÇ󷨡¢ÏàËÆÈý½ÇÐεÄÅж¨ºÍÐÔÖÊ¡¢Æ½ÐÐËıßÐεÄÅж¨µÈÖØҪ֪ʶ£¬×ÛºÏÐÔÇ¿£¬ÄѶȽϴó£®ÔÚÉæ¼°¶¯µãÎÊÌâʱ£¬Ò»°ãÒª¿¼ÂÇ·ÖÀàÌÖÂÛ˼ÏëµÄÔËÓã®