精英家教网 > 初中数学 > 题目详情
已知二次函数y=x2+bx+c+1的图象过点P(2,1).
(1)求证:c=-2b-4;
(2)求bc的最大值;
(3)若二次函数的图象与x轴交于点A(x1,0)、B(x2,0),△ABP的面积是,求b的值.
【答案】分析:(1)将P点坐标代入抛物线的解析式中,即可证得所求的结论;
(2)将(1)所得的b、c的关系式代入bc中,即可得到关于bc与b的函数关系式,根据函数的性质即可得到bc的最大值;
(3)可根据韦达定理,用b表示出AB的长,进而根据△ABP的面积及P点的纵坐标求出AB的具体值,即可得出关于b的方程,从而求得b的值.
解答:(1)证明:将点P(2,1)代y=x2+bx+c+1,
得:1=22+2b+c+1,(1分)
整理得:c=-2b-4;(2分)

(2)解:∵c=-2b-4,
∴bc=b(-2b-4)=-2(b+1)2+2,(4分)
∴当b=-1时,bc有最大值2;(5分)

(3)解:由题意得:
∴AB=|x2-x1|=
即|x2-x1|2=,(6分)
亦即,(7分)
由根与系数关系得:x1+x2=-b,x1•x2=c+1=-2b-4+1=-2b-3,(8分)
代入
得:
整理得:,(9分)
解得:b1=-,b2=-.(10分)
点评:此题主要考查了二次函数图象上点的坐标意义、二次函数的最值、根与系数的关系等知识的综合应用能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

22、已知二次函数y=x2+mx+m-5,
(1)求证:不论m取何值时,抛物线总与x轴有两个交点;
(2)求当m取何值时,抛物线与x轴两交点之间的距离最短.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数y=x2+(2a+1)x+a2-1的最小值为0,则a的值是(  )
A、
3
4
B、-
3
4
C、
5
4
D、-
5
4

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知二次函数y=-x2+2x+m的部分图象如图所示,则关于x的一元二次方程-x2+2x+m=0的解为(  )
A、x1=1,x2=3B、x1=0,x2=3C、x1=-1,x2=1D、x1=-1,x2=3

查看答案和解析>>

科目:初中数学 来源: 题型:

8、已知二次函数y1=x2-x-2和一次函数y2=x+1的两个交点分别为A(-1,0),B(3,4),当y1>y2时,自变量x的取值范围是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数y=-x2+bx+c的图象如图所示,它与x轴的一个交点坐标为(-1,0),与y轴的交点坐标为(0,3).
(1)试求二次函数的解析式;
(2)求y的最大值;
(3)写出当y>0时,x的取值范围.

查看答案和解析>>

同步练习册答案